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Background 

Recent flooding in the Chehalis basin has led managers, residents, and others to begin evaluating 
options for managing flood risk in the future (e.g., Ruckleshaus Center 2012). Climate change is 
expected to both increase the risk of winter flooding and decrease summer low flows – with 
implications for human communities and ecosystems alike. This document summarizes the 
results of a study aimed at providing initial estimates of the impacts of climate change on 
streamflow in the Chehalis River basin. The specific objectives of this work were to: 

1. Refine projections of changing hydrology in the Chehalis River Basin, 
2. Supply the larger project team with new inputs for hydraulic and ecosystem models, and  
3. Evaluate the potential for climate change to alter the proportion of runoff originating 

above the proposed dam during flood events. 

1.1 Climate Change in the Pacific Northwest 

1.1.1 Greenhouse gas scenarios 

Since it is impossible to predict the exact amount of greenhouse gas emissions resulting from 
future human activities, scientists use greenhouse gas scenarios to represent a range of different 
future conditions. These “what if” scenarios are used to drive global model simulations, which 
provide estimated changes in temperature, precipitation, and other aspects of the Earth’s climate.  

Datasets used in this study include both the more recent greenhouse gas scenarios – dubbed 
Representative Concentration Pathways, or RCPs (Van Vuuren et al. 2011) – as well as the 
previous set, stemming from the Special Report on Emissions Scenarios, or SRES (Nakicenovic 
et al. 2000, for more information, see Chapter 1 of Mauger et al. 2015).  

Table 1. Greenhouse gas scenarios used in this report. 

Greenhouse 
gas scenarios Scenario characteristics Description used 

in this report 

RCP 4.5 A low scenario in which greenhouse gas emissions 
stabilize by mid-century and fall sharply thereafter. “Low” 

SRES A1B 
A medium scenario in which greenhouse gas 
emissions increase gradually until stabilizing in the 
final decades of the 21st century. 

“Moderate” 

RCP 8.5 A high scenario in which greenhouse gass emissions 
continue to increase until the end of the 21st century. "High” 
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1.1.2 Projected changes in temperature and precipitation 

The Puget Sound region is projected to warm rapidly during the 21st century (Figure 1). Prior to 
mid 21st century, the projected increase in air temperatures is about the same for all greenhouse 
gas scenarios, a result of the fact that a certain amount of warming is already “locked in” due to 
past emissions and existing infrastructure. After about 2050, projected warming depends on the 
amount of greenhouse gases emitted globally in the coming decades. For the 2050s (we use 30-
year averages to represent the climate of the central decade, so the 2050s refers to the average 
over 2040-2069) annual average air temperature in Washington State is projected to rise +4.3°F 
to +5.8°F, on average, for a low (RCP 4.5) and a high (RCP 8.5) greenhouse gas scenario, 
respectively (Mote et al. 2013), relative to the 50-year period 1950-1999. 

Natural variability has a large influence on regional precipitation, causing ongoing fluctuations 
between wet and dry years and between wet and dry decades. Climate models project only small 
changes in annual, fall, winter, and spring precipitation: instead, changes in seasonal 
precipitation will continue to be primarily driven by year-to-year variations rather than long-term 
trends. Models are more consistent in projecting a decline in summer precipitation for the region. 
As described below, changes in heavy rain events are projected to be much more pronounced 
than for annual and seasonal precipitation, and are likely to exceed the range of natural 
variability within this century (Trenberth 2011).  

Figure	1.	All	scenarios	project	
warming	for	the	21st	century.	The	
graph	shows	average	yearly	
temperatures	for	the	Pacific	
Northwest	relative	to	the	average	for	
1950-1999	(gray	horizontal	line).	The	
black	line	shows	the	average	
simulated	temperature	for	1950–
2011,	while	the	grey	lines	show	
individual	model	results	for	the	same	
time	period.	Thin	colored	lines	show	
individual	model	projections	for	two	
emissions	scenarios	(low:	RCP	4.5,	
and	high:	RCP	8.5	–	see	Section	3	for	
details),	and	thick	colored	lines	show	
the	average	among	models	
projections	for	each	scenario	(Data	
Source:	Taylor	et	al.	2012). 
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1.2 Climate change impacts on flooding 

In the Pacific Northwest, climate change is expected to impact flooding via the following four 
primary mechanisms. 

1.2.1 Sea Level Rise:  

Higher sea level can increase the extent, depth, and duration of flooding by making it harder for 
flood waters in the rivers and streams to drain to the sea. Globally, sea level rose by about 7 
inches from 1900-2000, and the most recent assessment of West Coast sea level rise (NRC 2012) 
projects an additional rise of 24 in. (range: 4 to 56 in.), on average for the Pacific Northwest, by 
the year 2100 (relative to 2000). 

Sea level rise will affect flooding near the mouth of the Chehalis River, particularly near the 
towns of Aberdeen and Hoquiam, and may affect water quality by elevating groundwater levels 
and increasing the extent of saltwater intrusion. Increased inundation and erosion due to sea level 
rise could also cause habitat loss in low-lying areas, locations with highly erodible sediments, 
and areas where inland migration of coastal habitats is hindered by bluffs or human development. 
Changes in the salinity of estuarine waters may also affect plant and animal communities. 

1.2.2 Snowpack:  

As air temperatures warm, snow is projected to accumulate less in winter and melt more rapidly 
in spring and summer. Due to its generally low elevation and proximity to the Pacific Ocean, the 
hydrology of the Chehalis basin can be classified as “rain dominant”: very little winter 
precipitation falls as snow. As a result, the basin exhibits a seasonal cycle in streamflow that 
closely matches the seasonal variations in precipitation. Nonetheless, about 23% of the basin 
area does experience a notable accumulation of snow each winter, and some of the highest 
elevation headwaters of the basin frequently retain snow into June and July.  

Historically, monthly snow accumulation in the Chehalis basin has peaked on February 1st. By 
the 2050s (2040-2069), average February 1st snowpack in the basin is projected to decline by 
about 80%, relative to 1970-1999 (based on both a high and a low greenhouse gas scenario; 
Mote et al. 2015). Since snow retains water from fall and winter storms, this shift from snow to 
rain is projected to result in a direct increase in flood risk as precipitation from these storms 
contributes directly to runoff (Tohver et al. 2014). 

1.2.3 Heavy Rains 

Given the warm winter temperatures that predominate in the Chehalis basin, heavy rain events 
are expected to be the primary driver of winter flood risk. In the Pacific Northwest, the majority 
of heavy rain events can be classified as Atmospheric River events (sometimes referred to as 
“pineapple express” events). Atmospheric Rivers (ARs) are characterized by a narrow band of 
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elevated humidity drawn from the tropics (or sub-tropics) to the mid-latitudes during winter 
storms. These can result in high rates of precipitation, particularly on the windward slopes of 
coastal and inland mountain ranges. 

Most observational studies find increases in both the frequency and intensity of heavy 
precipitation in Western Washington (e.g., Mass et al. 2011, Rosenberg et al. 2010, Dulière et al. 
2013). Similarly, current research is consistent in projecting an increase in the frequency and 
intensity of heavy rain events as the climate warms. For example, Warner et al. (2015) found that 
the top 1% daily rainfall events in Western Oregon and Washington will intensify by 22% (range: 5 
to 34%) by the 2080s (2070-2099, relative to 1970-1999, for RCP 8.5). These high intensity events 
are also projected to occur more frequently: occurring about 7 days per year (range: 4 to 9 days per 
year) by the 2080s in comparison to 2 days per year historically.  

1.2.4 Sediment 

Winter rates of sediment transport, erosion, and landslides are all expected to increase as a result 
of climate change. Heavy rain events reduce slope stability by rapidly raising the water table (or 
groundwater elevation) and by enhancing water drainage through the soil to lower layers 
(Bogratti et al. 2010). In addition, intense rainfall can erode surface sediments, and higher 
streamflow during these events can erode stream banks and transport more sediment within the 
stream and along the stream bed (Curran et al. in review). These events can also lead to increased 
landslide risk: wetter soils are heavier, can absorb less precipitation (thus increasing runoff), and 
have greater lubrication among soil layers (Henn et al. 2015, Iverson et al. 2015). 

Even as more sediment is transported downstream, sea level rise is expected to make it harder for 
the river to transport that sediment to the Pacific Ocean. Higher seas impose a backwater effect, 
reducing flow rates and increasing the rate of settling.  

Sediment deposition in a river channel will result in reduced capacity and an increased risk of 
flooding. Given the likely increase in sediment mobilization and transport combined with a likely 
decrease in the ability of sediment to exit the system, climate change is likely to result in reduced 
channel capacity in the Chehalis river system, particularly in the lower reaches of the river. 
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Previous Flood Projections 

Several previous studies have quantified hydrologic changes in the Pacific Northwest, including 
changes in streamflow at specific sites within the Chehalis basin (e.g., Hamlet et al. 2013, 
Salathé et al. 2014), from which projected changes in flood risk can be derived. Initial efforts, 
comparing the results of these two studies, showed strong disagreement among estimates, 
ranging from small decreases in flood risk to a near doubling by mid-century (Figure 2). 
Unfortunately, these differences are strongly associated with differences in the approaches used 
to produce the estimates, in particular regarding the approaches used in developing the climate 
projections that serve as input to the hydrologic modeling. Other studies have since confirmed 
the strong dependence of modeling approach on projections of change (e.g., Mendoza et al. 
2015). Along with the prospect of further refinements to the modeling and post-processing 
approaches, this sensitivity to the choice of methodology was a key motivation for the current 
study. In the sections below, we highlight where improvements have been made to previous 
approaches. The analysis also includes multiple datasets and models, intended to facilitate 
similar comparisons in the new dataset. 

Figure	2.	Large	differences	among	
previous	estimates	of	the	change	in	
the	100-year	flood	volume	(%)	for	the	
Chehalis	River	at	Grand	Mound.	
Projections	are	based	on	two	different	
approaches	to	“downscaling”	global	
climate	model	projections	(see	section	
below	for	a	definition):	(1)	statistical	
(“Hybrid	Delta”,	Hamlet	et	al.	2013;	
change	assessed	for	the	2040s,	or	
2030-2059)	and	(2)	dynamical	
(“WRF”,	Salathé	et	al.	2014;	see	
Section	1.4.2).	There	are	two	different	
WRF	projections:	one	based	on	the	
raw	regional	climate	model	
simulations	(“RAW-WRF”)	and	
another	based	on	the	bias-corrected	
simulations	(“BC-WRF”).	All	changes	
are	assessed	for	a	moderate	
greenhouse	gas	scenario	(SRES	A1B,	
see	Table	1)	for	the	2050s	(2040-
2069)	relative	to	1970-1999.	 



9 | P a g e  

 

 

Climate Data & Models 

This section describes the observed and projected future climate datasets that were used to both 
evaluate precipitation simulations and to drive hydrologic simulations of changing streamflow. 
With the exception of the point observations used for initial validation of the regional climate 
model simulations, all of the datasets used in this study provide gridded estimates of daily 
climate – either interpolated from observations or simulated – at a spatial resolution of 1/16-
degree (about 5 km x 7 km, see Table 2). 

Table 2. Gridded climate datasets used in this study 

   Future 

Dataset Model Historical 
Low 

Emissions 
(RCP 4.5) 

Moderate 
Emissions 

(SRES A1B) 

High 
Emissions 
(RCP 8.5) 

bcLivneh*  N/A (based on obs.) 1950-2013 -- -- -- 
bcMACA† bcc-csm1-1-m 1950-2005 2006-2099 -- 2006-2099 
bcMACA CanESM2 1950-2005 2006-2099 -- 2006-2099 
bcMACA CCSM4 1950-2005 2006-2099 -- 2006-2099 
bcMACA CNRM-CM5 1950-2005 2006-2099 -- 2006-2099 
bcMACA CSIRO-Mk3-6-0 1950-2005 2006-2099 -- 2006-2099 
bcMACA HadGEM2-CC365 1950-2005 2006-2099 -- 2006-2099 
bcMACA HadGEM2-ES365 1950-2005 2006-2099 -- 2006-2099 
bcMACA IPSL-CM5A-MR 1950-2005 2006-2099 -- 2006-2099 
bcMACA MIROC5 1950-2005 2006-2099 -- 2006-2099 
bcMACA NorESM1-M 1950-2005 2006-2099 -- 2006-2099 
rawWRF‡ CCSM3 1970-1999 -- 2000-2069 -- 
rawWRF ECHAM5 1970-1999 -- 2000-2069 -- 
bcWRF§ CCSM3 1970-1999 -- 2000-2069 -- 
bcWRF ECHAM5 1970-1999 -- 2000-2069 -- 

* Bias-adjusted version of the observationally-based Livneh et al. 2013 gridded daily meteorological dataset. The dataset is 
adjusted to match the monthly time series from PRISM (Daly et al. 2004, 2008). 

† Bias-adjusted version of the statistically downscaled Multivariate Adaptive Constructed Analogs (MACA, Abatzaglou and 
Brown 2011) gridded daily climate projections. The dataset is adjusted to match the 1950-2011 climatology from PRISM 
(Daly et al. 2004, 2008). 

‡ Weather Research and Forecasting (WRF) mesoscale climate model (www.wrf-model.org, Skamarock et al. 2005). 
Simulations are based on the previous set of global climate model projections; newer simulations will be available in late 
2016. 

§ Bias-adjusted version of the dynamically downscaled WRF projections. The dataset is bias-corrected using the 
observationally-based bcLivneh dataset listed above and described in the text. 
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1.3 Observations 

1.3.1 Weather Station Data 

Hourly precipitation observations from NOAA’s Cooperative Observer program (COOP, 
REFERNCE) were obtained from the National Center for Environmental Information (NCEI, 
Table 3). Hourly, 6-hourly and daily rainfall data sets are created by summing the mm per hour 
from the raw COOP data files over these time periods (for 6-h and 24-h rainfall) and adding in 
zeros as needed where no rainfall was recorded (the NOAA entries are left blank when there is 
no precipitation). If 33% of the data over the period (6-hours, 24-hours) are missing the period is 
assigned a missing value. These time-continuous hourly, 6-hourly and daily rainfall files are used 
to calculate the percentiles for each year and for the period as a whole along with all the times 
when the percentile rain threshold was equaled or exceeded. Although both 6-hourly and daily 
data were processed, analysis of model biases was performed only on the daily data. Extension to 
6-hourly and 2-day precipitation could easily be undertaken in future work. 

Table 3. Hourly weather station observations obtained for evaluating the regional climate model 
simulations. About six of the 14 stations are outside of the Chehalis basin – these were included based on 
both proximity and quality of the record. For comparison with the regional model simulations, data were 
only used for the years 1970-2010. 

Site ID Name Lat. Long. Elev. (ft) Years 
450013 Aberdeen 20NNE 47.26 -123.71 435 01/01/1970—12/31/2010 
451277 Centralia 1W 46.71 -122.98 190 01/01/1970—12/31/2010 
451457 Cinebar 2 E  46.61 -122.50 1001 01/01/1970—12/31/2010 
455549 Montesano 1 S  46.97 -123.61 25 09/01/1981—12/31/2010 
456864 Quinault RS  47.47 -123.85 220 01/01/1970—12/31/2010 
456896 Rainier Ohanapecosh 46.73 -121.57 1950 01/01/1970—12/31/2010 
456909 Randle 1 E 46.53 -121.93 900 01/01/1970—12/31/2010 
459112 Westport 2 S 46.87 -124.11 20 01/01/1970—07/28/2004 
459485 Yelm 46.95 -122.60 350 01/01/1970—12/31/1978 
451064 Camp Grisdale 47.37 -123.60 820 01/01/1970—09/19/1985 
456114 Olympia Airport 46.97 -122.90 217 01/01/1970—12/31/2010 
457294 Sam Henry Mountain 46.52 -123.02 1460 11/13/1980—02/23/1993 
458788 Vanson Peak 46.42 -122.15 4931 11/04/1980—08/09/1985 
459358 Winters Mountain 46.45 -122.32 3650 11/24/1980—09/16/2009 

1.3.2 Gridded Observations 

Surface weather observations – in particular long-term high-quality records – are typically sparse 
in spatial coverage, and tend to be biased towards low elevation areas near population centers. 
This means that point observations are generally sub-optimal for use in hydrologic modeling 
studies, in which the manifestation of large-scale weather patterns may be very different from 
one part of the watershed to another – in particular in areas with complex terrain. In addition, the 
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two hydrologic models used in this study employ a 
gridded approach, in which daily weather conditions must 
be developed for each input grid cell for use in estimating 
the water balance. 

As a result, numerous approaches have been developed to 
produce spatially distributed and temporally complete 
estimates of daily temperature, precipitation, and winds 
for use in driving hydrologic model simulations (e.g., 
Maurer et al. 2002, Daly et al. 2002, Di Luzio et al. 2008, 
Hamlet and Lettenmaier 2005, Hamlet et al. 2013, Livneh 
et al. 2013, 2015). Although the methods vary, the 
general approach is to interpolate weather observations 
onto a grid and then apply corrections based on proximity 
and topographic similarity. 

In this study we use data derived from the 1/16-degree 
Livneh v1.1 dataset (version 15Oct2014, Livneh et al. 
2015, http://www.colorado.edu/lab/livneh/data) with 
North American Extent into Canada to obtain gridded 
daily estimates of minimum and maximum temperature, 
precipitation and wind speed from Jan 1, 1950 to Dec 31, 
2013. Although the focus of this work is the Chehalis 
River Basin, we develop the dataset for the entire Pacific 
Northwest domain, as this is the standard approach and it 
requires minimal additional effort.  

The data were produced using daily surface weather 
observations from the NOAA Cooperative Observer 
(COOP) network. Gridded daily temperature and 
precipitation data were produced by correcting for known 
biases and interpolated to the output 1/16-degree (about 5 
km x 7 km) grid using the synergraphic mapping system 
(SYMAP) algorithm. Temperature at each grid cell was 
then adjusted for elevation differences using a constant 
6.5 °C/km lapse rate. Instead of using a fixed lapse rate, 
gridded precipitation values were scaled to match the 
long-term monthly mean from the Parameter-Elevation 
Regressions on Independent Slopes (PRISM) model 

 
Figure 3. Differences in the 
monthly values of maximum 
temperature (top, °F), minimum 
temperature (middle, °F), and 
precipitation (bottom, %) for the 
Livnehv1.0/v1.1 dataset relative to 
the PRISM dataset (1950-2013). 
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(Daly et al. 2002, 2008). Wind data were not produced directly from observations, but from a 
reanalysis1 of observations. Specifically, the NCEP-NCAR reanalysis wind data (Kalnay et al. 
1996) was bi-linearly interpolated to the 1/16-deg Livneh grid. 

Recent evaluations of the Livneh et al. (2013) dataset have shown that the fixed lapse rate 
assumption for temperature can result in substantial biases, since most observations are at low 
elevation and the atmosphere can deviate significantly from this rate of temperature change with 
altitude. In particular, temperatures at elevation can exhibit a substantial cold bias in the winter 
months. Figure 3 shows the biases between the monthly PRISM dataset (AN81M monthly, Daly 
et al. 2008) and the Livnehv1.0/v1.1 datasets for minimum/maximum temperature and 
precipitation. Temperature biases were largest in the mountains, where the Livneh dataset 
assumes a constant lapse rate for temperature. This has implications for hydrologic model 
simulations, since many elements of the water balance – snow accumulation and melt, 
evaporation, transpiration – depend non-linearly on the temperature. Sensitivity tests indicate 
that this can result in biased estimates in both historical conditions as well as the response to 
warming.  

As a result of the temperature bias, in this study we have corrected the gridded Livneh 
meteorological dataset using monthly data from PRISM. Since the Livneh dataset extends into 
Canada, a PRISM climatology developed for British Columbia (PCIC, 2014) was applied to the 
Canadian portion of the domain. To do this, the monthly PRISM data was aggregated from its 
1/24-degree native resolution to the 1/16-degree Livneh grid. Similarly, the PRISM climatology 
from PCIC was aggregated from 1/120-degree to 1/16-degree resolution. Whereas the 
climatology was used in the Canadian portion of the domain, the PRISM monthly time series 
from Jan 1950 – Dec 2013 was used for the U.S. portion of the domain. 

Using the reference PRISM datasets, a simple bias adjustment was performed by adjusting the 
daily Livneh temperatures with the difference between the monthly Livneh dataset and the 
interpolated monthly PRISM temperature variables. For precipitation, a ratio was used in lieu of 
a difference. The final result was that the Livneh dataset has the same monthly climatology as 
the PRISM dataset. One additional correction was applied due to a complication in the method 
that arose for precipitation: when the monthly total in the Livneh dataset was zero but non-zero 
in the PRISM dataset, the consequence was an infinite ratio (divide by zero) for scaling the 
Livneh dataset. To avoid this, the daily precipitation data was simply scaled uniformly to match 
the PRISM monthly value instead of using a ratio. 

                                                

1	 The	term	“Reanalysis”	refers	to	models	that	are	used	to	optimally	combine	a	vast	amount	of	surface,	airborne,	and	satellite	
observations	using	a	Bayesian	framework,	in	order	to	obtain	best	estimates	of	evolving	weather	and	climate	patterns	over	the	
observational	record.	
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The final resulting bias corrected training dataset (“bcLivneh”) covers an area between 41 – 53 N 
and 125 to 108W for Jan 1, 1950 to Dec 31, 2013.  

1.4 Projections 

Evaluating climate change impacts requires developing spatially relevant scenarios of projected 
changes in climate. Yet global climate models (GCMs) are typically available at much coarser 
scales (e.g., 100 km resolution). In these cases, “downscaling” can be used to relate the large-
scale changes projected by GCMs to smaller-scale changes of relevance to impacts assessment. 
There are two general categories of downscaling approaches (for more on the two techniques, 
see WHCWG 2013): 

1. Statistical Downscaling, in which projections are disaggregated using empirical 
relationships between GCM variations and observed weather characteristics, and 

2. Dynamical downscaling, in which a regional climate model (RCM) simulation provides 
a physically-based estimate of local climate variations, using GCM outputs as a boundary 
condition. 

For this study, we used projections employing both techniques, in order to provide a check on the 
results stemming from each approach. 

1.4.1 Statistically Downscaled Projections 

The statistically downscaled projections were obtained from the MACAv2-LIVNEH dataset 
(Multivariate Adaptive Constructed Analogues, Hegewisch and Abatzoglou 2016, Abatzoglou 
and Brown 2012). As with all statistical downscaling approaches, MACA was applied by using 
an observationally-based dataset to develop empirical relationships between coarse-scale global 
model projections and local-scale weather and climate variations. In this case the dataset used 
was Livneh v1.0 (on the US side) and Livneh v1.1 on the Canadian side (Livneh et al. 2013). 
MACA was applied at the daily time step, and used a multivariate constructed analogues 
approach, meaning that a historical library of observations was used to relate similar 
meteorological states in both the GCM and the observations. 

Projections were based on 10 global models from the CMIP5 (Coupled Model Intercomparison 
Project Phase 5, Taylor et al. 2012) experiment. The 10 GCMs were selected from the larger set 
of CMIP5 simulations based on their ability to accurately represent the climate of the Pacific 
Northwest (Rupp et al. 2013, Table 1). The MACA downscaling was applied to the historical 
experiment (1950-2005) and two future projection experiments (2006-2099) for each GCM (i.e., 
2 time series per GCM). The two projections were taken from a low (RCP 4.5) and a high (RCP 
8.5) greenhouse gas scenario (Van Vuuren et al. 2011). 
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For consistency with the corrected Livneh et 
al. (2013) dataset used for this project, the 
MACA data were also bias-adjusted so that 
monthly MACA data matched PRISM. 
Corrections to the MACA dataset were 
computed by applying the difference between 
the average monthly values for temperature 
from the Livneh NAmerExt dataset (1950-
2013) and the Livneh v1.0/v1.1 combination 
dataset (1950-2011). For precipitation, the 
ratio was used instead of the difference. These 
monthly corrections were applied to all daily 
values in each month of the MACAv2-LIVNEH dataset to correct both the historical and future 
values in the dataset.  

1.4.2 Dynamically Downscaled Projections 

The dynamically downscaled projections were based on Regional Climate Model (RCM) 
simulations performed using the Weather Research and Forecasting (WRF) Mesoscale Model 
(http://www.wrf-model.org; Skamarock et al. 2005). The WRF model was implemented 
employing the approach described in previous work (Salathé et al. 2010, 2014). In this 
configuration, nested 36- and 12-km grids were used to downscale from the global atmospheric 
fields with grid spacings of approximately 
100-200 km. The inner 12-km domain spans 
the region from northern California to 
southern British Columbia and from the 
coastal ocean to the Rocky Mountains (Figure 
4). Although somewhat coarse in resolution 
for the domain of the Chehalis basin, the WRF 
model grid is sufficient to capture the general 
features of the watershed, including the area 
upstream of the proposed dam (Figure 5). 

The WRF projections include an 
observationally-based historical simulation 
and 3 GCM projections. The observationally-
based simulation was driven by the NCEP-
NCAR Reanalysis Project (NNRP, Kalnay et 
al. 1996), which spans the years 1950-2010. 
The three other WRF simulations were based 
on global model projections (CCSM3 and 

 
Figure 4. Domains for the WRF (Weather 
Research and Forecasting) regional model: 
Western US at 36-km and Pacific Northwest at 
12-km resolution. 
 

 
Figure 5. WRF 12 km grid points (red dots) that 
overlap with the Chehalis River basin. The four 
grid cells that overlap with the area upstream of 
the proposed dam are circled in red. The 
background shading shows the topography of the 
region, with the 330, 980, and 1640 ft (100, 300, 
and 500 m) contours. 
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ECHAM5) included in the CMIP3 (Coupled 
Model Intercomparison Project Phase 3, 
Meehl et al. 2007) experiment, in addition to 
one simulation based on the CCSM4 
projections used in CMIP5 (Taylor et al. 
2012). The CCSM4 run was only used in the 
precipitation analysis, and was excluded from 
the hydrologic simulations due to data 
limitations. For the WRF simulations, the 
historical time period (in which observed 
greenhouse gases are used to drive model 
simulation) spans from 1970-1999, while the 
future projections span from 2000-2069 and 
are based on moderate (SRES A1B) 
greenhouse gas scenario. In the case of 
CCSM4, the historical and future simulations 
span from 1950-2005 and 2006-2099, respectively, based on a low (RCP 4.5) greenhouse gas 
scenario.  

1.4.2.1 Evaluating	WRF	precipitation	

In order to determine model biases in precipitation for the historical period and any changes to 
precipitation frequency and intensity in the future period we examined four different 
precipitation thresholds: the 80th, 90th, 95th and 98th percentiles. WRF model data are provided at 
6-hourly intervals, with precipitation being accumulated from the start of the model simulation. 
Thus, precipitation rate is calculated as the difference between model time steps. Time steps for 
which a previous time was not available from WRF, either because it is the first time in the 
simulation or because it is the first time after a restart has occurred, are set to a missing value. 
For the daily analyses model daily rainfall on day 1 is calculated as the difference between 
accumulated rainfall on day 1 at 06 UTC from that on day 0 at 06 UTC (except for CCSM4 
which is the accumulation from 00 UTC on day 0 to day 1, i.e. the past 24 hours). The 6-hourly 
rainfall is the accumulated rainfall over the past 6 hours. Percentiles are based on rain rates 
above 0.1” (2.54 mm) in a time period (6 hours or 1 day). This threshold is chosen to roughly 
correspond with the lower limit of detectability of rain per hour for the in situ rain gauges. WRF 
has no definable limit to which rain is or is not present beyond selecting any value above 0, 
which may include unrealistically low values for precipitation.  

 

Figure 6. Average Oct-Nov precipitation 
(cm/month, for 1970-2010), based on the 
WRF NNRP simulation. 
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Maps of composite rainfall show that the basic features of precipitation in the region are captured 
by the WRF model (Figure 6). Extreme precipitation appears to also be well represented by the 
model. Figure 7 shows the average 98th percentile event in both the observations and the model. 
The comparison shows general agreement, and that the model does capture the higher 
precipitation totals in the area above the proposed dam.  

Nonetheless, the analysis might be improved by using a higher resolution WRF grid to more 
accurately represent the topography (smoothed topography may lead to mis-representations of 
precipitation) and better distinguish between rain falling within the basin as opposed to outside 
of the watershed boundary (e.g., lee vs. windward side of the Willapa Hills – a key question 
given this area’s location upstream of the proposed dam).  

1.4.2.2 Integrated	vapor	transport	and	precipitable	water	

Previous research suggests that the primary factors affecting the magnitude of extreme 
precipitation events in the region are thermodynamic (Warner et al. 2015). In other words, the 
atmospheric dynamics are already optimized during atmospheric river events to maximize 
precipitation in the region, and are only limited by the concentration of water vapor available 
(due to moisture convergence) during a particular storm. In order to evaluate potential variations 
in moisture convergence we calculate composites of the daily mean total precipitable water 
vapor (TPW, column-integrated water vapor) and integrated vapor transport (IVT) for each 
precipitation threshold identified based on the percentiles listed above. These composites can be 
compared to understand the large-scale features associated with the rainfall above each threshold.  

Figure 7. Comparison between observed precipitation extremes (COOP, average among all 
stations listed in Table 3) and those simulated by WRF. Results are shown for the 98th 
percentile in daily rainfall for the years 1970-2010, for both the entire basin (“Basin”, in red) 
and for just the area above the proposed dam (“Dam”, in blue). The average of the three global 
model projections is also shown, labeled MME (Multi-Model Ensemble). Error bars show the 
standard deviation for all years. 



17 | P a g e  

 

1.4.2.3 Principle	components	analysis	

Principal components analyses (often referred to as Empirical Orthogonal Functions, or EOFs) 
were explored to identify the primary modes of IVT spatial variability associated with heavy 
precipitation events over the basin. Both a combined EOF and a complex EOF analysis were 
performed on the global model daily IVT fields. A combined EOF identifies the primary modes 
of variability in IVT associated with maximum variance in the combined zonal (East-West) and 
meridional (North-South) components of the vapor transport resulting in separate spatial patterns 
for the IVT components (the EOFs) based on their in-phase maximum variance. A complex EOF 
is similar to a combined EOF, but the maximum variance in the zonal and meridional winds 
associated with the primary modes of variability are not necessarily in-phase with one another. 
Because the complex EOF approach maximizes the variance in the transport components 
regardless of their phase, it is potentially a better approach for exploring the impact of any 
change to the path of AR events impinging on the basin in the future related to changes in the 
mean location of the mid-latitude storm track. 

We performed an EOF analysis on daily IVT data for only those days when the daily 
precipitation was at or above the 90th percentile for that grid point. The 90th percentile was 
chosen as a compromise between increased sample size and the need to focus on high intensity 
rain events. Prior to calculating the combined EOF the two integrated transport terms, IQU and 
IQV, are centered (mean removed) and normalized (divided by the standard deviation). The 
anomalies are then weighted by the square root of the cosine of the latitude to account for the 
changing area of the model grid with latitude. The complex EOF is based on performing a single 
value decomposition of the complex matrix Z = IQU’ + i*IQV’, where IQU’ and IQV’ are 
normalized anomalies, as defined as above. The real part of the complex EOFs are the spatial 
patterns associated with the zonal vapor transport, while the imaginary part of the complex EOFs 
are the spatial patterns associated with the meridional vapor transport. Similarly, the real part of 
the complex PCs represents the time variability of the modes for the zonal vapor transport, while 
the imaginary part of the complex PCs represents the time variability for the meridional vapor 
transport.  

1.5 WRF bias-correction 

The WRF outputs are on a curvilinear 12-km grid that is incompatible with the hydrological 
model. These were first spatially disaggregated (SD), via bi-linear interpolation, to rectangular 
coordinates on the 1/16-degree Livneh dataset grid. Two versions of the 1/16-degree WRF data 
were then produced: 

1. “rawWRF”, in which the interpolated WRF data were used directly as input to hydrologic 
modeling, and 
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2. “bcWRF”, in which the interpolated WRF 
data were first bias-corrected to match the 
bcLivneh dataset. 

The bias-correction process was applied to the 
rawWRF outputs utilizing the spatial 
disaggregation bias correction (SDBC, Liang et al, 
1994) method. In this method, first the trend in the 
interpolated “SD” data (calculated as a 21-day, 
31-year moving average) was removed from both 
the historical and future data. Second, the data 
were bias corrected to the Livneh training dataset 
utilizing the quantile mapping method (Li et al, 
2010, Pierce et al, 2015). In this quantile mapping 
method, the distribution of 45-day periods of the 
historical RCM data was mapped to the same 45-
day periods of data from the observed distribution 
from the Livneh training dataset. The differences 
(ratios) of the future RCM to the historical RCM 
at each quantile in the cumulative distribution 
function (CDF) were preserved in the final 
downscaled data to allow future distributions of 
the variables to change from that observed in the 
past. Such quantile mapping is known to alter the 
final trends in precipitation data, so as a final 
process we adjusted the mean precipitation to 
match that from observations (i.e. the presRat 
method from Pierce et al, 2015). Only the interior 
15-days of the 45-days in the quantile mapping 
were saved to the final downscaled data in order 
to smooth results between 45-day periods of the 
year. Third, the trends were replaced upon the 
data. Finally, one last bias correction was 
performed on the historical data by adjusting the 
annual means of temperature and precipitation 
with respect to those from the Livneh training 
dataset.  

For temperature, a quality control measure was 
taken to ensure that for each day the minimum 
temperature was less than or equal to the 

 
Figure 8. Differences between the historical 
bias-corrected WRF simulations and the 
bcLivneh dataset used for bias correction. 
Maps show the maximum temperature (top), 
minimum temperature (middle), and 
precipitation (bottom) for the mean (left), 
99th percentile (middle) and 1st percentile / 
percentage of dry days (right). All numbers 
are sampled from the full daily record of 
each dataset.  
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maximum temperature. In cases where this was 
not true the minimum temperature for the day 
was set equal to the maximum temperature. 

1.5.1 validating the WRF bias-correction: 
Historical 

The downscaling process includes bias 
correction of the historical RCM temperature 
and precipitation simulations, which were 
adjusted to match the observationally-based 
training dataset (in this case, bcLivneh). The 
bias correction process was applied using fixed 
45-day sub-periods in each year. By 
construction, comparisons of the distribution of 
the 15-days of saved bias-corrected RCM data 
to the corresponding 15-days of the training 
Livneh dataset show that the two agree almost 
exactly. However, comparisons over longer sub-
periods likely exhibit some biases. To 
investigate such biases, we considered the 
distribution of temperature and precipitation 
over all days and all years of available data, and 
compared the 1st and 99th percentiles as well as 
the mean of the distribution to the observations. 
For precipitation, the percentage of dry days 
(precipitation<0.01”) was used instead of the 1st 
percentile. 

Figure 8 shows the historical biases, relative to 
the bcLivneh training dataset, that remain after 
bias correction. The biases are much lower for 
the bias-corrected reanalysis NNRP dataset than 
for the free-running climate model simulations, 
presumably because the reanalysis dataset 
started out much closer to the observations than the other simulations. Second, biases in 
temperature for the average and 99th percentile are very low across the region for all bcRCMs, 
but at the 1st percentile are approximately ±0.4°F scattered across the region. Third, there is a dry 
bias of about 2% in average precipitation values in parts of the interior Northwest, and some 
structure in the bias in the 99th percentile values. These may be related to the choice of a dry day 
threshold, which affects the bias-correction. 

  
Figure 9. Differences between the changes 
projected by the bias-corrected and raw WRF 
datasets for the 2050s (2040-2069) relative to 
1970-1999. Results are shown for the change in 
annual average maximum temperature 
(top, °F), minimum temperature (middle, °F), 
and precipitation (bottom, %) for the mean 
(left), 99th percentile (middle) and 1st percentile 
/ percentage of dry days (right). 
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1.5.2 validating the WRF bias-correction: 
Future 

The downscaling process aims to preserve the 
signal of climate change projected by the RCM 
with respect to the historical period. To assess 
potential biases introduced in this signal, we 
compare the changes in bcWRF and rawWRF for 
the 2050s (2040-2069) relative to the historical 
period (1971-1999). As above, by construction the 
signal of change over 15-day sub-periods in each 
year yields a nearly exact match when comparing 
to the bias-corrected to raw model projections. 
However, comparisons over longer sub-periods 
showed significant biases in the future projections, 
especially for the extremes.  

Figure 9 shows the biases (difference between the 
projected changes in bcWRF and rawWRF) for 
the 1st percentile / percent dry days, 99th percentile, and average values in temperature and 
precipitation. Note that future projections in precipitation were calculated as a percent change, so 
the precipitation maps (bottom panel in Figure 9) show the differences in these percent changes. 
In general, there are essentially no differences in the average change projected for the 2050s for 
all variables. Although there are fairly substantial differences in the temperature extremes, the 
biases are much smaller in the vicinity of the Chehalis basin, and they are nearly non-existent for 
precipitation extremes.  

Changes in flood risk in the Chehalis are primarily driven by extreme precipitation events, which 
typically involve rainfall accumulations that are substantially in excess of the annual 99th 
percentile (i.e. N-year precipitation events, defined as the annual daily maximum with a 1/N-% 
chance of exceedance). In order to evaluate the quality of the bias-correction for rare events such 
as these, we consider the 10-year precipitation event, which would roughly correspond to the 
99.99th percentile event when considering the full daily record of precipitation. Figure 10 shows 
the bias in the change projected for the 10-year precipitation event from bcWRF compared to the 
rawWRF data. However, the 10-year event might under-sample extremes since there is a chance 
that the largest events might cluster in particular years. For comparison, we also include an 
alternative extreme precipitation measure, which may be more closely aligned with the bias 
correction approach: the 99.9th percentile of daily precipitation, sampled from a single 
distribution constructed from the full daily record of precipitation (approximately equivalent to 
the 3-year event).  

 
Figure 10. Same as Figure 8, except for 
precipitation extremes: showing the 
difference in the projected change in the 10-
year precipitation event (left), and the 99.9th 
percentile in daily precipitation (right).  
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Figure 10 shows that projected changes in either extreme precipitation metric has both positive 
and negative biases spatially over the region with no indication of a systematic bias relating to 
geography, metric, or global model projection. In order to evaluate options for minimizing these 
differences, we performed sensitivity tests by varying the precise details of the bias correction 
procedure. No test resulted in a perfect match between the rawWRF and bcWRF extremes 
projections. However, one critical source of disagreement was corrected: testing indicates that 
there is a mismatch between the seasonal timing of heavy rain events in the Livneh observations 
and in the WRF simulations. As a result, the quantile mapping step in the bias correction was 
occasionally mapping relatively less extreme events in the WRF projections to much more 
extreme events in the observations, thereby exaggerating their magnitude. When the opposite 
occurred, the bias in the 10-year and 99.9% events remained unaffected since these were smaller 
events. This prompted us to expand the window used in quantile mapping from a width of 15 to 
45 days. 

Ultimately, a bias correction approach that is designed to correct the full probability distribution 
will likely always yield a mismatch when comparing extreme values in the simulated and 
observed datasets. We attribute the remaining biases to two principal factors: (1) the fact that the 
extremes are by definition poorly sampled and therefore difficult to bias correct robustly, and (2) 
differences in the timing of extreme events that are not captured by a 45-day window. 

Hydrologic Data & Modeling 

This study uses observed streamflow from USGS observations and simulated streamflow from 
two hydrologic models: the Variable Infiltration Capacity (VIC) macroscale hydrologic model 
and the Distributed Hydrologic Soil Vegetation Model (DHSVM). Historical and future 
streamflow estimates were produced at sites in or near the Chehalis River basin, selected in 
consultation with project partners (Table 4).  

Due to limited time and budget, neither hydrologic model was calibrated. Future work could 
further refine these results by calibrating one or both models for the Chehalis basin. 

Table 4. Streamflow sites selected for output from hydrologic model simulations. The table lists the 
hydrologic model used to develop streamflow estimates at each site (not all sites were simulated by both 
hydrologic models), and the water years (Oct-Sep) of quality-controlled observations. Sites listed in bold 
were bias corrected – in all 11 sites had the minimum required 30 water years of valid data. 

ID	 Site	Name	 Lat.	 Long.	 Model	 Water	Yrs.	

12019310	 Chehalis	River	above	Mahaffey	Creek	near	Pe	Ell	 46.54532	 -123.29872	 BOTH	 2014-2015	
12020000	 Chehalis	River	near	Doty,	WA	 46.61750	 -123.27639	 BOTH	 1951-2015	
12020500	 Elk	Creek	near	Doty,	WA	 46.62833	 -123.33056	 DHSVM	 1968-1970	
12020525	 Elk	Creek	below	Deer	Creek	near	Doty	 46.63472	 -123.29556	 BOTH	 2011-2011	
12020800	 SF	Chehalis	River	near	Wildwood	 46.44500	 -123.08250	 BOTH	 n/a	
12020900	 South	Fork	Chehalis	River	near	Boistfort,	WA	 46.52722	 -123.11611	 DHSVM	 1966-1980	
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ID	 Site	Name	 Lat.	 Long.	 Model	 Water	Yrs.	

12021000	 SF	Chehalis	River	at	Boistfort	 46.54583	 -123.13194	 BOTH	 1962-1965	
12021800	 Chehalis	River	near	Adna,	WA	 46.62583	 -123.10056	 DHSVM	 n/a	
12023500	 Chehalis	River	near	Chehalis,	WA	 46.64167	 -123.01528	 DHSVM	 n/a	
12024000	 SF	Newaukum	River	near	Onalaska,	WA	 46.57583	 -122.68389	 BOTH	 1958-1971	
12024400	 NF	Newaukum	River	above	Bear	Creek	near	Forest	 46.66750	 -122.76889	 BOTH	 n/a	
12024500	 North	Fork	Newaukum	River	near	Forest,	WA	 46.65556	 -122.77778	 DHSVM	 1961-1966	
12025000	 Newaukum	R	near	Chehalis	 46.62028	 -122.94389	 BOTH	 1951-2015	
12025100	 Chehalis	River	at	WWTP	at	Chehalis,	WA	 46.66111	 -122.98278	 DHSVM	 n/a	
12025310	 Salzer	Creek	at	Centralia	 46.69972	 -122.92806	 DHSVM	 2011-2011	
12025700	 Skookumchuck	River	near	Vail,	WA	 46.77278	 -122.59278	 BOTH	 1968-2015	
12026150	 Skookumchuck	R.	blw.	Baldy	Run	Crk.	nr.	Centralia	 46.79028	 -122.73417	 BOTH	 1970-2015	
12026400	 Skookumchuck	River	near	Bucoda,	WA	 46.78889	 -122.92306	 BOTH	 1969-2015	
12026590	 Hanaford	Creek	at	Mouth	 46.74750	 -122.93556	 DHSVM	 n/a	
12027000	 Lincoln	Creek	at	Mouth	 46.73611	 -123.17778	 BOTH	 n/a	
12027500	 Chehalis	River	near	Grand	Mound,	WA	 46.77611	 -123.03444	 BOTH	 1951-2015	
12029000	 Black	River	at	Little	Rock,	WA	 46.90278	 -123.02222	 DHSVM	 n/a	
12030000	 Rock	Creek	at	Cedarville,	WA	 46.86806	 -123.30694	 BOTH	 1951-1971	
12031000	 Chehalis	River	at	Porter,	WA	 46.93944	 -123.31306	 BOTH	 1953-2015	
12032500	 Cloquallum	Creek	at	Mouth	 47.00472	 -123.38639	 BOTH	 1951-1972	
12033000	 Chehalis	River	at	South	Elma,	WA	 46.98222	 -123.41111	 DHSVM	 1951-1951	
12033500	 East	Fork	Satsop	River	near	Matlock,	WA	 47.16250	 -123.36667	 DHSVM	 n/a	
12034000	 Bingham	Creek	near	Matlock,	WA	 47.16111	 -123.39583	 DHSVM	 n/a	
12034200	 East	Fork	Satsop	River	near	Elma,	WA	 47.12778	 -123.41667	 DHSVM	 1958-1971	
12035000	 Satsop	River	near	Satsop,	WA	 47.00083	 -123.49361	 BOTH	 1951-2015	
12035002	 Chehalis	River	near	Satsop,	WA	 46.97222	 -123.49028	 DHSVM	 2003-2008	
12035400	 Wynoochee	River	near	Grisdale	 47.38056	 -123.60861	 BOTH	 1966	
12036000	 Wynoochee	River	above	Save	Creek	 47.29917	 -123.65194	 BOTH	 1951-2015	
12036400	 Schafer	Creek	near	Grisdale,	WA	 47.20444	 -123.61389	 DHSVM	 1987-1996	
12036500	 Wynoochee	River	near	Montesano,	WA	 47.17967	 -123.62500	 DHSVM	 n/a	
12036650	 Anderson	Creek	near	Montesano,	WA	 47.12389	 -123.65472	 DHSVM	 1973-1985	
12037400	 Wynoochee	River	above	Black	Creek	nr.	Montesano	 47.01167	 -123.65417	 BOTH	 1957-2015	
12039005	 Humptulips	River	at	Highway	101	 47.23167	 -123.97278	 VIC	 2003-2015	

n/a	 Black	River	near	SR	12	 46.83008	 -123.18549	 BOTH	 n/a	
n/a	 Stillman	Creek	at	Mouth	 46.55351	 -123.13856	 BOTH	 n/a	
n/a	 Independence	Creek	at	mouth	 46.79808	 -123.16552	 BOTH	 n/a	
n/a	 Wishkah	River	at	Mouth	 46.97418	 -123.80908	 VIC	 n/a	
n/a	 Hoquiam	River	at	Mouth	 46.97088	 -123.87724	 VIC	 n/a	
n/a	 Humptulips	River	at	Mouth	 47.04528	 -124.04934	 VIC	 n/a	
n/a	 Darlin	Creek	Fish	Passage	Project	 46.95777	 -123.03890	 DHSVM	 n/a	
n/a	 Wisner	Creek	Bunker	Road	 46.65932	 -123.04941	 DHSVM	 n/a	
n/a	 Bunker	Road	and	Wisner	Creek	Projects	(2)	 46.68186	 -123.23753	 DHSVM	 n/a	
n/a	 Great	Eight	Barrier	Removal	Project	(8)	 46.76046	 -123.19220	 DHSVM	 n/a	
n/a	 Harstad	Crk	Mdl	Satsop	Rd	Fish	Barrier	Correction	Proj.	 47.06285	 -123.50125	 DHSVM	 n/a	
n/a	 Boyer	Road	Fish	Barrier	Correction	Project	 46.94624	 -123.29400	 DHSVM	 n/a	
n/a	 Eaton	Creek	South	Bank	Road	Fish	Barrier	Corr.	Proj.	 46.94372	 -123.35173	 DHSVM	 n/a	
n/a	 Taylor	Crk	Taylors	Ferry	Rd	Fish	Barrier	Corr.	Proj.	 46.97396	 -123.38910	 DHSVM	 n/a	
n/a	 Mox	Chehalis	Branch	Rd	Fish	Barrier	Correction	Proj.	 47.04322	 -123.24942	 DHSVM	 n/a	
n/a	 Unnamed	Trib.	to	Stearns	Crk	Fish	Barrier	Removal	 46.56158	 -122.96461	 DHSVM	 n/a	
n/a	 Prairie	Creek	Fish	Barrier	Removal	 46.67017	 -123.14830	 DHSVM	 n/a	
n/a	 Van	Ornum	Creek	Fish	Barrier	Removal	 46.65451	 -123.09674	 DHSVM	 n/a	
n/a	 Gaddis	Creek	near	South	Band	Road	Fish	Barrier	 46.93147	 -123.32708	 DHSVM	 n/a	
n/a	 Carlisle	Lake	 46.57038	 -122.73679	 DHSVM	 n/a	
n/a	 Chehalis	River	DHSVM	Model	outlet	 46.96998	 -123.81667	 DHSVM	 n/a	

1.6 Observations 

Daily streamflow observations were obtained for all USGS stations with at least 30 complete 
water years of valid data (Table 4, http://waterdata.usgs.gov/nwis). These were assessed for 
quality control issues and missing data, and for the influence of major alterations in flow 
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regulation – in particular the installation of the 
two existing reservoirs in the basin on the 
Wynoochee and Skookumchuck Rivers. All 
data were cropped to the start of the first full 
water year and the end of the last full water 
year in each record, both for consistency with 
the hydrologic modeling and to ensure uniform 
sampling throughout the bias correction 
procedure. 

1.7 VIC Hydrologic Model 

1.7.1 Overview 

We used the Variable Infiltration Capacity 
(VIC) macroscale hydrologic model (Liang et 
al. 1994, Liang et al. 1996, Gao et al. 2010) 
implemented at 1/16 degree (Elsner et al. 2010, 
Hamlet et al. 2013) to produce daily 
streamflows at sites in or near the Chehalis 
River (see Table 4). VIC is a physically based, 
macro-scale hydrologic model which solves 
the water and energy balance at each grid cell, producing water balance variables (among others) 
such as runoff, baseflow, evapotranspiration, soil moisture, and snow water equivalent (Figure 
11). Downscaled daily meteorological data – precipitation, maximum and minimum daily 
surface air temperature, and wind speed – were used as inputs to run the VIC model. Additional 
driving variables such as shortwave radiation, and longwave radiation, and humidity were 
derived by the model from the primary meteorological inputs. 

The VIC model has been widely used to assess the hydrologic impact of climate change on a 
number of watersheds over the Pacific Northwest and over the western U.S. (e.g., Hamlet et al. 
2013). We used the most recent VIC model (version 4.1.2), implemented at the typical resolution 
of 1/16-degree to simulate hydrologic fluxes (e.g., runoff and baseflow) at each grid cell. 

1.7.2 Configuration 

In addition to daily forcing variables, the VIC uses four parameter files as inputs: the soil 
parameter file, vegetation file, vegetation library and snowbands parameter file. The soil, 
vegetation and snowbands parameter files contain information specific to each grid cell while the 
vegetation library contains general information for vegetation types. We used the parameter files 
developed/calibrated at 1/16-degree over the Pacific Northwest (Elsner et al. 2010). This section 

	

 

Figure 11. Schematic diagram of the land 
surface representation, and water and energy 
budgets in the VIC hydrologic model. 
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briefly describes the contents of 
each parameter file; additional 
details can be found in Hamlet et al. 
(2010).  

The soil parameter file contains 
information such as soil layer 
depth, infiltration parameter and 
other soil properties defined by 
Liang et al. (1994, 1996). The 
vegetation parameter file used in 
this study is based on pre-
processed parameters from the 
LDAS (Land Data Assimilation 
System) dataset for the continental 
United States, which utilizes a 
vegetation classification scheme 
from the University of Maryland 
(UMD, Hansen et al. 2000) at 1 km 
spatial resolution. Vegetation data 
at this scale were aggregated to 
produce sub-grid proportions of 
vegetation coverage and associated 
vegetation parameters at 1/16-
degree resolution, all based on the 
UMD classification scheme. The 
snowbands parameter file included 
the sub-grid elevation bands within 
each VIC model grid cell. The 
number of elevation bands 
assigned for a grid cell was based on two criteria: (1) a band may not have a maximum elevation 
range of more than 500 meters, and (2) there is a maximum of 5 elevation bands allowed per grid 
cell. For those cells where more that 5 bands would be required to accommodate the 500 meter 
range limit, the number of bands was set to 5 and the elevation ranges were equally distributed 
between them. Elevation bands were determined based on a 30 arc-second (about 1 km) Digital 
Elevation Model (DEM). 

1.7.3 Streamflow Routing 

VIC simulations of runoff and baseflow from each grid cell were used to produce the routed 
streamflows at each site using a daily-time-step routing model developed by Lohmann et al 

 
Figure 12. Comparing old and new peak flow estimates 
for the Chehalis River at Grand Mound. Results are 
similar for old and new historical climate datasets, but the 
switch to a new unit hydrograph (UH) does reduce biases. 
The figure compares raw (i.e.: not bias-corrected) peak 
streamflow observations (USGS) with raw (i.e.: not bias-
corrected, “No BC”) model estimates for two input 
climate datasets – the newer “bcLivneh” (see Table 2) 
dataset and the older “HB2860” (Hamlet et al. 2013) 
dataset – and for both a new and old unit hydrograph 
(“New UH”, “Old UH”), which is used in the streamflow 
routing. All results stem from VIC hydrologic model 
simulations, for the years 1950-2006. 
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(1996). The within cell routing used a Unit Hydrograph (UH) approach to represent distribution 
of flow at the outlet point with respect to time from an impulse input at each source point and the 
channel routing used the linearized Saint-Venant equation to represent the flow at a downstream 
point as a function of the water velocity and the diffusivity, both of which may be estimated from 
geographical data (Lohmann et al. 1998). The river routing model assumes all runoff exits a cell 
in a single flow direction.  

A predetermined routing network provides the upstream-downstream linkage between VIC 
model grid cells. The streamflow routing sites described in Table 3 were then located on the 
developed streamflow routing network and verified based on their true latitude-longitude 
location and the cited watershed area by the USGS. The routed flows at each site were then bias-
corrected to match naturalized streamflow observations using a quantile mapping approach 
applied to daily flows (see discussion below).  

A recent study by Lee et al. (2016) showed that a correction to the unit hydrograph (UH) 
substantially improved the simulation of high flow extremes. Specifically, the UH was adjusted 
to distribute runoff more rapidly, whereas the previous formulation had introduced longer delays 
in flow timing and muted peak flows as a result. We applied the same UH developed by Lee et al. 
(2016, referred to in the figures as “New UH”). Figure 12 shows that the new UH improves the 
simulation of flood statistics relative to the previous UH (“Old UH”). 

1.8 DHSVM Hydrologic model  

Figure 13. 
Illustration of multi-
layer vegetation 
canopy 
representation, and 
vertical and lateral 
water fluxes within 
each grid cell of the 
DHSVM model 
(Figure based on 
Wigmosta et al. 
2002). 
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As a high-resolution complement to the VIC model simulations, we used the Distributed 
Hydrology Soil and Vegetation Model (DHSVM). With its a finer spatial resolution of 150 m (490 
ft), the model can capture some of the local scale differences in topography, soils, and vegetation 
that make up the many tributaries of interest in the Chehalis River Basin. In particular, DHSVM 
is able to resolve a number of smaller basins on the order of 1 km2 which cannot be explicitly 
represented by VIC. This section describes the configuration, testing, and streamflow outputs 
developed from DHSVM simulations. 

1.8.1 Overview 

DHSVM is a gridded, spatially distributed hydrology model that represents physical processes of 
watersheds, incorporating characteristics such as topography, land cover, soil type, soil thickness, 
and a streamflow network for internal flow routing (Figure 13, Wigmosta et al. 1994, 2002). 
DHSVM is designed to simulate the spatial distribution of soil moisture, snow cover, 
evapotranspiration and runoff using a two-layer canopy energy balance model for snow 
accumulation and melt (Anderson, 1968), a three-layer unsaturated soil model, and a saturated 
subsurface flow model (Storck et al. 1998) with a mass balance components for snow 
accumulation and ablation and water from snowpack (Wigmosta et al. 1994) and energy balance 
representing net radiation, sensible and latent heat transfer, and energy advected by free water 
(rain, throughfall, drip). DHSVM has been widely applied in the mountainous western United 
States (e.g., Storck et al. 1998, Bowling and Lettenmaier, 2001, Whitaker et al. 2003, Thyer et al. 
2004, Jost et al. 2009) and for assessing the impacts of climate change (e.g., Elsner et al. 2010, 
Cuo et al. 2011, Cristea et al. 2014, Naz et al. 2014) and land use (e.g., Sun et al. 2013, Cuo et al. 
2009, 2011) on streamflow.  

1.8.2 Model Domain 

The	DHSVM	model	was	configured	to	cover	the	Upper	and	Lower	Chehalis	basins	(Hydrologic	
Unit	Codes,	or	HUCs	17100103	and	17100104).	These	do	not	include	areas	draining	to	the	
estuary	downstream	of	Aberdeen.	Figure	14	shows	the	delineation	of	the	full	model	domain,	
along	with	the	55	sub-basin	areas	delineated	to	show	the	direct	contributing	area	upstream	of	
each	of	the	55	locations	of	interest	(Table	4).	The	area	extends	into	the	Olympic	National	Forest	
to	the	North,	the	Willapa	Hills	to	the	South,	and	Onalaska	to	the	East.  

In	DHSVM,	the	watershed	is	subdivided	into	a	uniform	square	grid	of	cells,	or	model	elements,	
with	spatial	resolution	generally	ranging	between	10	m	and	150	m;	for	this	study	we	use	a	
resolution	of	150	m.	The	spatial	distribution	of	the	soil	and	vegetation	characteristics	of	the	
watershed	are	captured	at	the	scale	of	the	150	m	Digital	Elevation	Model	(DEM)	used	as	a	
primary	input	to	DHSVM.	As	discussed	below,	some	features	of	the	stream	network	were	
difficult	to	resolve,	even	at	this	resolution,	specifically	due	to	(1)	inconsistencies	in	the	average	
downstream	directions	when	elevations	were	averaged	to	a	150	m	grid,	and	(2)	the	close	
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vicinity	of	headwater	gridcells	at	
sub-watershed	boundaries.	.	
Terrain analysis methods for 
digital streamflow network and 
watershed delineation (available in 
ArcGIS) were used to resolve the 
spatial distribution of elevation 
characteristics at the 150 m scale 
using flow pathways developed at 
the 30 m scale.  

1.8.3 Time step 

DHSVM	was	run	at	a	3	hourly	
timestep.	In	this	project,	the	
outputs	are	aggregated	to	daily	
timesteps	for	analysis.	Since	the	
source	climate	forcing	data	for	this	
project	is	only	available	at	the	
daily	timescale,	any	analysis	at	the	
3	hourly	model	outputs	would	be	
primarily	sensitive	to	the	
disaggregation	process	used	to	
generate	DHSVM	inputs,	as	
opposed	to	observed	or	modeled	
weather	variations	at	the	3	hourly	
time	scale.	In	addition,	sub-daily	
flows	are	much	more	sensitive	to	
calibration,	in	particular	relating	to	
the	timing	of	runoff	and	routing	through	the	stream	network.	Although	not	feasible	in	the	
current	project,	future	work	could	investigate	the	potential	for	using	the	3-hourly	streamflow	
estimates. 

1.8.4 Inputs 

This section describes the development and configuration of the soil, vegetation, and climate 
inputs to DHSVM. DHSVM	is	initialized	with	a	series	of	four	state	files	representing	snow,	soil,	
stream	channel,	and	interception	storage.	In	addition,	there	are	a	series	of	constant	parameters	
that	are	applied	uniformly	across	the	entire	domain	(Table	5).		

 

 
Figure 14. DHSVM model domain, digital stream network, 
and 55 sub-basins with direct contributing area to the 55 
model output locations (Table 4). The stream network is 
classified by Strahler stream order (Strahler 1957), showing 
increasing thickness as streams progress from the 
headwaters to the mainstem. For the sub-basins, note that the 
“direct contributing area” is defined here as the contributing 
basin area that is unique to each specific site, and that the 
full contributing area will often be larger since many sites 
include smaller upstream tributaries that are also among the 
55 model output locations.  
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Table 5. Constant Parameters used in Chehalis Basin DHSVM 

Constant Parameter Description Value  Source 
Roughness of soil surface  0.02 (m) Frans, 2015 
Roughness of snow surface 0.01 (m) Frans, 2015 
Rain threshold: Minimum temperature at 
which rain occurs 

0.5 (°C) Dai, 2008 

Snow threshold: Maximum temperature at 
which snow occurs 

0.03 (°C) Dai, 2008 

Vegetation reference height 70 (m) Frans, 2015 
LAI Multiplier for rain interception 0.0001 Czarnowski and Olszewski, 1968 
LAI Multiplier for snow interception 0.0005 Storck, 2000 
Intercepted snow that can only be melted 0.005 (m) Storck, 2000 
Temperature lapse rate -0.0055 (°C/m) Minder et al. 2010 
Precipitation Lapse Rate 0.001 (m/m) Henn et al. 2015 
Maximum Snow Albedo 0.878 Frans, 2015 
Precipitation Multiplier 1 Calibration parameter 

1.8.4.1 Land	cover	

The land cover information was developed 
using the National Land Cover Database 2011 
(NLCD 2011; Figure 15, Table 6). This is the 
most recent national land cover product, with 
a 16-class land cover classification scheme 
applied at a spatial resolution of 30 meters 
based on circa 2011 Landsat satellite data and 
created by the Multi-Resolution Land 
Characteristics Consortium (Homer et al, 
2015).  

In the current configuration, the root zone 
parameter ranges in depth from 0.19-0.22 
meters. Developed classes were parameterized 
with a leaf area index (LAI) ranging from 1.0 
in the winter and 3.0 in the summer and an 
albedo of 0.2. Deciduous forest LAI ranged 
from a minim of 0.14 in January to a 
maximum of 5.9 in August, with 
corresponding monthly albedo ranging from 
0.16 in the winter and 0.07 in the summer, and 
tree height of 30 m. Evergreen forest LAI was 

Table 6. Vegetation Parameters used in Chehalis 
DHSVM  
Parameter Description Value range 
Vegetation Description  See Figure 12 
Impervious Fraction  0-1 
Overstory Present  TRUE/FALSE 
Understory Present  TRUE/FALSE 
Fractional Coverage  default 
Hemi Fract Coverage  default 
Trunk Space  default 
Aerodynamic Attenuation  default 
Radiation Attenuation  default 
Max Snow Int Capacity  default 
Snow Interception Eff  default 
Mass Release Drip Ratio  default 
Height  0-35 
Overstory Monthly LAI  0.1-6 
Understory Monthly LAI  0.1-0.5 
Maximum Resistance  3000-5000 
Minimum Resistance  200-500 
Moisture Threshold  0.13-.33 
Vapor Pressure Deficit  4000 
Rpc  0.108 
Overstory Monthly Albedo  0.09-0.16 
Understory Monthly Albedo  0.2 
Number of Root Zones  3 
Root Zone Depths  0.02-0.1 
Overstory Root Fraction  0.2-0.4 
Understory Root Fraction  0-0.6 
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a consistent 5.8 throughout the year, with tree height of 35 meters. We referred to Kelleher et al. 
(2015) to verify that other (less sensitive) parameter values such as maximum snow interception 
capacity (e.g. Evergreen = 3%), minimum resistance, moisture threshold, vapor pressure deficit, 
and other land cover related parameters were within physically reasonable ranges.  

1.8.4.2 Soils	

The Digital General Soil Map of the United States, or STATSGO dataset (Soil Survey; see 
references) was developed for regional and national studies designed for broad planning and 
management uses requiring estimates of soil characteristics. The soil units are distributed as 
spatial and tabular datasets. The geospatial data maps soil units on a 1-kilometer resolution grid 
for the conterminous United States by weighting average soil values computed by aggregating 
soil layers and components of the SSURGO soil database comprised of detailed county soil 
survey maps. For comparison, the STATSGO database resolves 18 different soil map units from 
which DHSVM soil parameters can be derived (Table 7; see Kelleher et al, 2015 for parameter 
value sensitivities, ranges, and references); the SSURGO database resolves 555 unique soil map 
units. At this time, the maximum number of unique soil types that can be modeled in DHSVM is 

	 	

Figure 15. Land Cover classification (NLCD 2011) for the Chehalis Basin (classes labeled with * do not 
occur within this basin).  
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256 soil types. As DHSVM is actively used 
and developed for research, we expect that 
this functionality will be expanded in future 
versions of DHSVM.  

Although vegetation and soils data are derived 
from two different sources, physical 
consistency must be maintained between the 
depth of soil and depth of roots. In DHSVM, 
the rooting depth (specified in the vegetation 
parameters) cannot exceed the soil depth 
(specified in the soil depth grid); for this 
reason, the soil depth was limited to 0.75-2.5 
m deep based on the STATSGO soil depth 
range of 0.08 – 1.75 m and the estimated 
minimum rooted depth of evergreen trees of 
0.5 m.  

 

Table 7. Soil Parameters used in Chehalis 
DHSVM  

Parameter Description Value range 
Soil Description See Figure 14 
Lateral Conductivity (m/s) 0.01-0.00015 
Exponential Decrease (1/m) 0.7-3 
Maximum Infiltration (m/s) 0.00001 
Depth Threshold  0.5 
Capillary Drive 0.1 
Surface Albedo 0.1 
Number of Soil Layers 3 
Porosity 0.39-0.52 
Pore Size Distribution 0.08 
Bubbling Pressure 0.29 
Field Capacity 0.31 
Wilting Point  0.23 
Bulk Density (kg/m3) 1565 
Vertical Conductivity (m/s) 0.01 
Thermal Conductivity (W/m°C) 6.9-7.1 
Thermal Capacity (J/m3°C) 1400000 
Mannings n 0.013 
 

 

 

    
Figure 16. STATSGO soil types (left) and soil depth (right) derived from the Chehalis basin topography. 
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1.8.4.3 Meteorological	Forcings	

Six variables in 3-hourly timesteps are required to 
run DHSVM: Temperature (°C), relative humidity 
(%), precipitation (m), wind speed (m/s), and 
incoming shortwave and longwave radiation 
(W/m2). As a pre-processing step, we used the 
VIC model to disaggregate the daily 
meteorological data to a three-hourly time step, 
and to estimate humidity and radiative fluxes. In 
VIC, solar radiation, longwave radiation, and 
relative humidity are estimated following 
Thornton and Running (1999) and Bohn et al. 
(2013).  

In this study, meteorological inputs were provided 
at the 8 points shown in Figure 15. These were 
selected for computational feasibility: with the 8 
model input points, a 100-year model run takes 
about 5 days to complete on UW’s High 
Performance Computing cluster, whereas the full 
resolution 1/16-degree data (229 grid cells) would require 3 weeks. Given the large number of 
simulations (over 1000 years of simulations) used in this study, it was not feasible to use the full 
resolution inputs to DHSVM. Future work could explore different approaches to parallelization, 
which may lead to more efficient processing. 

The eight grid cells correspond to the grid cell closest to the centroid of each of the 8 major sub-
basins of the Chehalis: Wynoochee, Satsop, Cloquallum, Black, South Fork Chehalis, 
Skookumchuck, Newaukum, and Elk. These 8 input points are interpolated to each 150 m 
DHSVM grid cells using the Mountain Microclimate Simulation Model (MTCLIM; Hungerford 
et al. 1989, Kimball et al. 1997, Thornton and Running, 1999, Thornton et al. 2000, Bohn et al. 
2013). An assumed precipitation lapse rate is used in the disaggregation (Table 5). Sensitivity 
tests showed moderate sensitivity to the choice of a lapse rate, indicating that 0.001 m/m resulted 
in better simulations of peak flows. 

DHSVM requires spatial information for each point included as an input time series, with 
latitude and longitude in UTM coordinates (Zone 10, WGS84) and elevation in meters. To run 
the model, the input file lists each grid cell in the following format:  

Station Name 1 = data_46.53125_-123.28125 
North Coordinate 1 = 5153114.279000 
East Coordinate 1 = 478431.528300 

 
Figure 17. Meteorological input locations for 
DHSVM (green), and full 1/16-degree grid 
(black). The Chehalis basin is outlined for 
reference. 
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Elevation 1 = 290 
Station File 1 = 
/civil/shared/ecohydrology/christina/forcs_dhsvm/data_46.53125_-
123.28125 
 

The steps required to calculate this information are outlined in the HydroShare resource entitled 
“Chehalis Basin Climate DHSVM spatial processing” (see Appendix).  

1.8.4.4 Streamflow	network	

DHSVM	routes	streamflow	using	flow	direction	relationships	between	upstream	(higher	
elevation)	and	downstream	(lower	elevation)	grid	cells.	The	model	stream	network	and	
watershed	boundaries	are	derived	in	a	pre-processing	step,	based	on	a	digital	elevation	model	
(DEM,	Data	available	from	the	U.S.	Geological	Survey)	developed	at	the	resolution	of	the	model	
grid.	The	result	is	a	stream	network	that	accurately	routes	contributing	areas	to	downstream	
model	locations	of	interest,	though	the	computed	digital	network	may	vary	from	the	actual	
network	due	to	the	limitations	of	model	resolution.	Figure	11	shows	the	Chehalis	Basin	DHSVM	
digital	network	classified	by	Strahler	stream	order,	illustrating	how	headwater	streams	(thin	
blue	lines)	have	connectivity	to	larger	streams	and	ultimately	the	mainstem	Chehalis	River	
(thick	blue	lines).		

The	goals	of	this	process	are	to	(1)	have	the	entire	basin	drain	to	one	outlet,	(2)	develop	a	
continuous	connected	network,	and	(3)	ensure	the	correct	drainage	area	to	each	model	output	
location.	One	challenge	of	delineating	a	digital	network	using	a	150	m	DEM	is	that	the	flow	
directions	derived	from	a	150	m	average	elevation	do	not	always	generate	flow	pathways	that	
match	the	actual	landscape,	especially	in	terrain	with	low	relief,	or	where	streams	curve	at	low	
elevation	valleys	next	to	higher	elevation	topography.	To	address	this,	we	first	developed	s	
stream	network	using	a	30	m	DEM,	and	used	this	to	modify	the	150	m	DEM	to	ensure	that	the	
flow	directions	were	correctly	represented.	This	involved	an	iterative	process	of	adjustments	to	
the	150	m	DEM	and	comparisons	with	the	30-m	and	NHDplus	river	network	(McKay	et	al.	2012).	

Post-processing 

1.9 Model spin-up 

Prior to post-processing, all streamflow simulations must be adjusted to remove the model spin-
up time. Tests with varying start dates indicated that the sensitivity to initial conditions was 
nearly undetectable after just a few months of run time. As a conservative guard against biases 
arising from model spin-up, we discarded the first 9 months of all model simulations. 
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1.10 Daily bias-correction 

Since the current scope did not include time for calibration of the hydrologic models, bias 
correction was used to adjust streamflow estimates to reflect flows recorded in the observations. 
In previous approaches bias correction was applied at monthly time scales – adjusting 
naturalized streamflow using a quantile mapping approach outlined by Snover et al. (2003). A 
primary concern in monthly bias correction is that biases in the sub-monthly distribution of 
streamflow – daily flows, in particular – will not be removed in the process.  

Given the emphasis on daily extremes in this study, a daily bias-correction approach was 
developed. To do this, we adapted the statistical downscaling methods used to develop the 
MACA dataset (Abatzoglou and Brown 2012, Hegewisch and Abatzoglou 2016, described above) 
for use with observed and simulated daily streamflow estimates. The method works as follows: 

1. Remove the long-term trend, estimated using a 45-day/31-year moving average. Estimate 
anomalies using a multiplicative scaling, by dividing raw flows by the long-term trend. 

2. Scale the long-term trend – in both historical and future simulations – based on the ratio 
of the mean in the historical simulation to the mean of the observations. 

3. Bias Correction: 
a. Looping through each day of the year, select daily flows using a 45-day window 

applied to the full record of observations and historical and future simulated daily 
flows 

b. Bias-correct the daily anomalies by mapping quantiles from the observed and 
simulated flows selected in the previous step. 

c. Preserve future changes relative to historical by mapping quantiles from simulated 
historical and future flows. 

4. Recombine by multiplying the scaled estimates of the long-term trend with the bias-
corrected anomalies. 

The 31-year moving window was selected to as a compromise between adequate sampling of 
long-term variability and accurate estimation of long-term trends. Similarly, the 45-day window 
was chosen in order to encompass a range of seasonally-representative conditions yet avoid 
conflating short-term variations with seasonal variations in flow conditions, since the 
mechanisms (and therefore probability distributions) for each may not be the same. Tests 
indicate that the results are not particularly sensitive to the exact choice of window width, but 
that much shorter windows can lead to biases due to limited sampling and mis-matched 
seasonalities among observed and simulated streamflows.  

Since the long-term trend has already been removed, bias correction can be applied to the full 
daily record of simulated historical and future streamflow. Step 3(c) is needed because changes 
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in extreme flows may not scale 
with changes in the 45-day/31-year 
average: the quantile mapping 
preserves the changes in extremes 
that are exhibited in the raw 
simulations. 

Tests show that all bias-correction 
approaches lead to substantial 
improvements in estimates of flow 
extremes, but that the daily 
approach is superior, especially for 
estimating the magnitude of the 10-, 
50-, and 100-year peak flows 
(Figure 15). 

1.11 StreamFlow Statistics 

1.11.1  Time periods 

Monthly averages and extreme 
statistics were calculated for three 
30 year time periods: 1970-1999 
(“1980s”), 2040-2069 (“2050s”), 
and 2070-2099 (“2080s”). 
Although longer time periods 
might be desired to estimate extreme statistics, 30 years was deemed an appropriate compromise 
between longer periods, which may conflate long-term changes in flood risk with increased 
sampling of the extremes, and shorter time periods, which can limit the reliability of extremes 
estimates. 

1.11.2 Extreme Flows  

To calculate extreme statistics, the Extreme Value type 1 distribution described Gumbel (EV1), 
the Log-Pearson type 3 (LP3) and the generalized Extreme Value (GEV) distribution with L-
moments are commonly used. In this study we apply the GEV distribution with L moment to 
estimate flood and low flow statistics – following the methodology described in Salathé et al. 
2014 and Tohver et al. 2014 – based on findings that indicate it is superior to the LP3 
distribution (Rahman et al. 1999 & 2015, Vogal et al. 1993, Nick et al. 2011). Flood flows were 
computed for return intervals of 2, 10, 50, 100 and 500 years. To estimate flood magnitude, the 
maximum daily flows were extracted for each water year (October to September) at each site. 

 
Figure 18. Daily bias correction results in significantly 
improved peak flow estimates. Results are shown for the 
Chehalis River at Grand Mound, comparing observed 
(USGS) peak flow to those estimated from raw (No BC), 
monthly bias-corrected (monthly BC), and daily bias-
corrected (daily BC) simulations. All simulations are based 
on the bcLivneh (see Table 2) historical dataset and VIC 
hydrologic model, evaluated for water years 1950-2013. 
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These were ranked for each 30-year period and fitted to the GEV with L-moments (Wang 1997, 
Hosking and Wallis 1993, Hosking 1990).  

The lowest consecutive 7-day flows with a 2- (7Q2) and 10-year return interval (7Q10) were also 
estimated as a measure of extreme low flows. For the extreme low flow analysis, the same 
procedure used for estimating flood magnitude was followed, except the minimum 7-day 
consecutive running average streamflows were selected for each water year in lieu of maximum 
daily flows. 

1.12 Data structure 

All results, model files, climate data, and other documentation are linked from main project page 
(resources, with links, are listed in Appendix A). 

 

 

	

Results	Climate	
data	source	Sites	

Streamflow	
Bias	

Correc`on	

Hydrologic	
Model	/	
Data	

Root	Folder	

/	

DHSVM	
RAW	 Sites	

OBS	 Files	

MACA	 ...	

bcWRF	 ...	

rawWRF	 ..	
BCday	 ...	

VIC	
RAW	 ...	

BCday	 ...	

USGS	 Sites	 Files	

Figure 19. Data structure for streamflow results. 
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Table 8. File organization and naming.  

File Type Time Series Files 30-year Average Files & Graphics 

Site Name (see Table 3) 

Climate Data   (see Table 2) 

Time Range MACA: 
historical-full 
RCP45-full 
RCP85-full  

MACA: 
historical-1980s 
RCP45-2050s 
RCP45-2080s 
RCP85-2050s 
RCP85-2080s 

WRF: 
historical-full 
SRES-A1B-full 

WRF: 
historical-1980s 
SRES-A1B-2050s 

Hydrologic Model / Data VIC / DHSVM / USGS 

Bias Correction Raw / BCday 

Data Type DailyFlows 
MonthlyFlows 
LowFlows 
PeakFlows 

MonthlyAvg 
LowStats 
PeakStats  

 

1.12.1 Streamflow data 

Historical and future streamflow estimates were produced for two hydrologic models (VIC and 
DHSVM), both with and without streamflow bias correction, four climate datasets (bcLivneh, 
MACA, bcWRF, rawWRF; Table 2) – for which there are results for a total of 12 different 
global climate models, three greenhouse gas scenarios (SRES A1B, RCP 4.5, RCP 8.5), and 
three separate time periods (1970-1999, 2040-2069, and 2070-2099) – and 59 streamflow sites. 

The streamflow data are organized following the structure shown in Figure 16, where each 
column in the figure denotes one directory tier. Within each results directory (right-hand column 
in Figure 16), there are three types of files: time series files, 30-year averages, and graphics 
(Table 6). Time series files are provided for the entire available data set and labeled as ‘full’. 
These include the time series of daily flows (‘DailyFlows’), monthly average flows 
(‘MonthlyFlows’), annual 7-day low flows (‘LowFlows’), and the annual max of peak daily 
flows (‘PeakFlows’). Three types of data are provided for the 30-year averages: low and peak 
flow return statistics (LowStats/PeakStats), and the average monthly flows for each calendar 
month (MonthlyAvg). As with the time series files, separate versions of these files are created 
for each greenhouse gas scenario and each time period (1980s, 2050s, 2080s). In addition to the 
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data files, plots were created for each of the three the 30-year average results to facilitate quick 
looks at the results. The naming convention for all data files is as follows:  

<Site Name>_<Climate Data>_<Time Range>_<Hydro. Model / Data>_<Bias 
Correction>_<Data Type>.csv  

The naming associated with each of these files is listed in Table 8. 

Task 1 Results: Evaluating Changes in Rainfall 

Previous studies have shown that ARs are the dominant physical mechanism associated with 
heavy rainfall in the Pacific Northwest region (e.g., Ralph et al. 2006, Dettinger et al. 2011, 
Warner et al. 2012). Studies have also suggested that ARs will carry more water vapor in the 
future in association with a warming climate (e.g., Warner et al. 2015), and that the mid-latitude 
storm track will shift northward (IPCC, 2013). Other aspects of intense winter storms may have 
specific implications for the Chehalis, for example by altering how the storms interact with the 
topography of the basin. In this analysis, we address the following questions:  

1. Will future ARs result in more intense precipitation in the Chehalis? 
2. Will there be a change in the distribution of precipitation over the basin? 

1.13 WRF precipitation Projections 

Consistent with previous studies (e.g., Warner et al. 2015), WRF projects an increase in the 
intensity of heavy rain events (Figure 20). Specifically, all quantiles examined (80th, 90th, 95th 
and 98th percentile values) showed an increase in total daily precipitation, on average, for both 
the entire basin and the area upstream of the proposed dam, for the middle of the 21st century 

 

 
Figure 20. Projected change (%) in the 98th percentile of daily precipitation, for 
2030-2070 relative to 1970-2010. Based on the three WRF climate change 
projections described in Section 1.4.2. MME stands for multi-model ensemble.  



38 | P a g e  

 

(2030-2070) relative to historical (1970-2010). The 40-year time periods, as opposed to 30-year 
averages, were chosen in order to obtain better estimates of the extreme values. 

Figure 21 shows that there is generally a very close match between precipitation above the 
proposed dam and the average accumulation for the basin as a whole. Although there is some 
indication that the large events are associated with a greater proportion of rain above the dam, it 
is not clear if this is simply due to the positioning of storm systems – which may overlap with the 
southern portion of the basin but not the northern portion – or due to a mechanism driving 
increased intensities in this portion of the basin. 

A primary motivation for this study was to investigate the potential for climate change to alter 
the distribution of heavy rainfall across the basin. Figure 22 shows the change (in %) in the 

 
Figure 22. Projected change (%) in the ratio of precipitation above the dam vs. 
the entire Chehalis basin. Results are shown for a 98th percentile rain event, for 
2030-2070 relative to 1970-2010. The 98th percentile is calculated both as an 
average of the values for each individual year (red bars) and for the entire 41-
year record (asterisks). 

 

Figure 21. Scatterplot of historical (1970-
2010) daily simulated precipitation above 
the proposed dam vs. the average 
precipitation for the entire Chehalis basin. 
Each dot represents the results for one 
single day out of the full 41-year period. 
The 1:1 line is shown in gray.  



39 | P a g e  

 

proportion of rain falling upstream 
of the proposed dam relative to the 
Chehalis basin overall. The 
projections show a small decrease 
in the proportion of rain falling 
above the dam, but the changes are 
small compared to intermodal 
differences and unlikely to result in 
significant changes in the 
distribution of flood risk across the 
watershed. 

1.14 Assessing the drivers of 
Heavy precipitation 

Additional information may be 
gained by examining the large-
scale weather patterns associated 
with heavy precipitation events and 
evaluating whether or not these 
patterns are projected to change. 
We examine the daily rain rate and 
IVT associated with each mode by regressing the full fields onto the combined or complex EOFs 
for each mode (see “Climate Data & Models” section for details on the approach). 

The EOF analysis was applied separately to the global model IVT data based on 90th percentile 
precipitation events for each of the historical WRF simulations (NNRP, ECHAM5, CCSM3, and 
CCSM4). Each set of EOFs consistently showed two leading modes of variability (Figure 23). 
The dominant mode shows the typical pattern one might expect for these events, with southerly 
or southwesterly flow associated with a mid-latitude cyclone intercepting the coastline, while the 
second shows the alternate configuration, in which the flow is influenced by anti-cyclonic 
circulation also associated with a wave in the jet stream (referred to as Rossby waves). Both are 
well-known atmospheric river event configurations for the Pacific Northwest (Ryoo et al. 2013). 
There is also a third pattern (not shown) that appears distinguishable from the noise in some 
analyses, and which may be associated with a smaller cyclone breaking downstream of a larger 
system over the Pacific – this third mode would require more study to understand its 
development. Although all analyses show the same sequencing among the first few modes, the 
decrease in variance explained for the 2nd and 3rd modes is greater for the global model 
simulations (ECHAM5, CCSM3, CCSM4) than for the observationally-based reanalysis 

 
Figure 23. Composite anomaly in integrated vapor transport 
(IVT) for the 1st and 2nd modes identified in the EOF analysis. 
Results are shown for the ECHAM5 model for historical (1970-
2010) and future (2030-2070); similar patterns were found for 
the other WRF simulations. No color scale is shown because 
these are normalized anomalies: red shading indicates above 
average conditions, while the light green shading indicates 
average conditions. Wind vectors are denoted with arrows. 
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simulation (NNRP). In all analyses, the first mode explained about 10-20% of the variability, 
while the 2nd and 3rd modes explained about 7-10% of the variability each. 

The combined EOF analysis was also applied to the future simulations for the years 2030-2070. 
These showed the same modes, but with more water vapor transport. This is consistent with 
previous research (Warner et al. 2015, Scheff et al. 2015), which suggests that changes in 
precipitation in the Pacific Northwest are primarily driven by the increase in water-holding 
capacity of warmer air and not with a change in the intensity or position of storm systems. All of 
these future modes explain a smaller proportion of the variability than in the historical period.  

Anomalies in each variable associated with the zonal (east-west) and meridional (north-south) 
vapor transport (IQU and IQV, resepectively) modes must be examined separately in the case of 
the complex EOF analysis since the phase of their maximum variance differs (Figure 24). This 
analysis shows that the transport anomalies in the zonal direction are first, followed by the 
transport anomalies in the meridional direction. To complete a full phase of the wave captured by 
the complex EOF analysis, the negative of the zonal transport pattern would then occur, followed  

 
Figure 24. Composite anomaly in integrated vapor transport (IVT) for the 1st 2nd, and 3rd modes identified 
in the complex EOF analysis. Results are shown for the NNRP simulation model for 1970-2010; similar 
patterns were found for the other WRF simulations. Since it is a complex EOF, both westerly (IQU) and 
southerly (IQV) integrated vapor transport are shown for each mode. No color scale is shown because 
these are normalized anomalies: red shading indicates positive anomalies (anomalous westerly or 
southerly transport), while blue shading indicates negative anomalies (anomalous easterly or northerly 
transport). 
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Figure 25. Composite maps of lagged precipitation (colored contours) and integrated vapor transport 
(IVT, gray arrows in lower left of each map) for the leading mode identified in the complex EOF 
analysis. Results are shown for the NNRP simulation model for 1970-2010; similar patterns were found 
for the other WRF simulations. Since it is a complex EOF, there are two independent composites: one 
based on the leading mode in westerly (IQU) and southerly (IQV) integrated vapor transport. The 
topography of the region is shown via the shading, and the Chehalis basin is highlighted in grey. 
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by the negative of the meridional transport pattern (only the positive patterns are shown in Figure 
24). In the case of the first mode, the anomalous westerly transport anomalies (red) across the 
Pacific centered on about 20°N accompanied by the anomalous easterly transport (blue) to the 
north are followed by anomalous southerly transport reaching from south of Hawaii to the west 
coast of North America. These anomalies describe a mid-latitude cyclone circulation like that 
seen for the first combined EOF mode in Figure 23. In general, the two leading complex modes 
correspond closely with those identified in the combined analysis, in addition to a more robust 
third mode that appears to lack the clear atmospheric river signal seen in the previous two 
patterns. As with the combined analysis, the global model projections assigned more weight to 
the leading EOF relative to the reanalysis-based simulation.  

Evaluating the time progression of rainfall associated with the complex EOF patterns, maximum 
rainfall anomalies are observed in association with the westerly vapor transport anomalies a day 
after the maximum anomalies in the southerly vapor transport (Figure 25). This is consistent with 
the fact that the westerly vapor transport anomaly maximum over the basin occurs after the low 
pressure center has arrived onshore, whereas the southerly transport anomaly is a maximum as 
the storm first arrives at the coast.  

For both the combined and complex EOF analyses the primary modes of variability in IVT are 
associated with an AR event linked to a mid-latitude wave-like structure in the storm track. 
Neither analysis indicated substantial variation in the angle at which these events intercept the 
coastline: as shown in Figure 25 (gray arrows, lower left of each map), the moisture transport 
consistently arrived from the south or south-southwest. However, more study is required to 
examine the transport vectors in order to fully understand the implications of the transport 
directional anomalies and precipitation in the basin. 

Based on this analysis, the mechanisms driving heavy rain events are not expected to change 
substantially in the future. However, the projections do show that humidity – TPW (total 
precipitable water) – is projected to increase across the region, resulting in higher moisture 
transport associated with these storms. Future work could expand on the metrics evaluated here, 
in particular looking at transport and other possible factors contributing to heavy precipitation, 
such as atmospheric stability, and evaluate the potential to optimize regional model simulations 
(e.g., by increasing the resolution) in order to better capture the mechanisms governing 
precipitation. 

Task 2 Results: Projected changes in streamflow 

Projected changes in streamflow are consistent with previous studies, generally showing an 
increase in winter streamflow and flood risk and decreases in summer streamflow and low flows. 
For the Chehalis, winter increases are a response to increases in winter average precipitation, 
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higher intensity rain events, and to a much lesser extent, decreases in snowpack. Summer flow 
decreases are likely a result of decreases in summer season precipitation and increases in 
evaporative demand. 

All of the streamflow results, both historical and future, for all model and scenario combinations 
and all selected metrics, are provided online via the links listed in Appendix A. The data are 
organized as described above in the Section entitled “Data Structure”. In addition to simple 
excel-readable data files, we provide plots to facilitate quick views of the results. As an example, 
Figure 26 shows the results for the Chehalis River at Grand Mound, based on the VIC hydrologic 
model simulations and the MACA statistically downscaled climate projections. Although the 
projected changes in streamflow differ across the watershed, these results are representative of 
the findings for most mainstem sites. The figure shows comparisons of historical and future 
monthly flows in addition to the 2- and 10-year 7-day low flows, and the 2-, 10-, 50-, 100-, and 
500-year peak flow values. The range among projections stems from the 10 global models 
included in the MACA projections. MACA also includes results for both a low and a high 
greenhouse gas scenario (RCPs 4.5 and 8.5, respectively, see Table 1). The 100-year flood and 
10-year 7-day low flow projections for all scenarios are listed in Tables 9 and 10, respectively, 
for each of the 11 bias-corrected streamflow sites.  

In addition to the fact that peak flows are generally projected to increase, while low flows are 
projected to decrease, the figure highlights a key challenge associated with the interpretation of 
these results: there is a wide range among projections. In fact, when considering results from 
both hydrologic models (VIC, DHSVM) and all scenarios (RAW-WRF, BC-WRF, and MACA) 
there are many cases in which the range encompasses both decreases and increases. In addition, 
some projections appear to be implausibly large. For example, the high-end projection for the 
VIC MACA projection at Grand Mound is for a 233% increase in the 100-year peak flows by the 
2050s relative to 1970-1999. Given that the projected increase in heavy rainfall for that same 
time period is about ten times smaller than this, it seems unlikely that this constitutes a plausible 
change in peak flows. There are a number of important details to note regarding these issues: 

1. There will always be a range among projections. These are projections about the future, 
for which there will always be some uncertainty, given the unknowns about greenhouse 
gas emissions, natural climate variability, and the earth’s climate sensitivity (warming per 
unit greenhouse gas emissions). Planning for the future will always require consideration 
of a range among projections.  

2. Neither hydrologic model was calibrated. Due to budget limitations and the tight timeline 
under which these results were produced, it was not possible to calibrate the models. 
Bias-correction, used in lieu of calibration for this study, could introduce artifacts in the 
projected sensitivity to climate change.  

3. Extremes estimates are limited by sampling. The projected changes are calculated using 
30-year time periods, chosen as a compromise between including a time frame of 
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sufficient length for assessing extremes and providing information that does not conflate 
near-term and long-term changes. This is unlikely to be a major issue for the 2- and 10-
year events, and could be partially mitigated by re-computing changes using 50-year time 
periods. It is almost certainly a source of bias for the 100- and 500-year events. 
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Some of these issues can be diagnosed. For instance, we have made a point of including both raw 
and bias-corrected streamflow estimates, both for the climate inputs (RAW-WRF vs. BC-WRF) 
and for the streamflow estimates (RAW vs. BCday), because comparisons among these may be 
helpful in identifying results that are suspect: bias-correction should not significantly alter the 
projected change associated with warming. 

There are also approaches that can be taken to address many of these issues. Specifically, 
hydrologic model calibration, undertaken carefully, can ensure that models are more likely to 
accurately represent both the current state of the Chehalis basin’s hydrology, and importantly, its 
sensitivity to changes in temperature and precipitation. Additional work characterizing the 
climate drivers of flood risk would also help to better characterize the range among projections. 
The climate projections used in this study were an “ensemble of opportunity”, meaning that they 
were not optimized for the Chehalis basin. Currently, there simply are not enough WRF 
simulations available to accurately characterize the range among projections – new regional 
model simulations could be produced based on a selection of global models that better captures 
the range among projections for the watershed. In addition, these simulations could be optimized 
to ensure that the mechanisms governing precipitation change are well represented.  

In spite of these issues, the hope is that this dataset will provide a more robust set of results on 
which to base ongoing assessments and planning decisions. We anticipate an ongoing discussion 
among managers, scientists, planners, and stakeholders about how to use and interpret this data, 
along with suggestions on how it could be improved. 

  



48 | P a g e  

 

References 

Abatzoglou, J. T., & Brown, T. J. (2012). A comparison of statistical downscaling methods suited for 
wildfire applications. International Journal of Climatology, 32(5), 772-780. 

Anderson, E. A. (1968). Development and testing of snow pack energy balance equations. Water 
Resources Research, 4(1), 19-37. 

Bohn TJ, Livneh B, Oyler JW, Running SW, Nijssen B, Lettenmaier DP. 2013. Global evaluation of 
MTCLIM and related algorithms for forcing of ecological and hydrological models. Agricultural 
and Forest Meteorology, 176, 38-49. 

Borgatti, L., & Soldati, M. 2010. Chapter 8: Landslides and climatic change. In Geomorphological 
Hazards and Disaster Prevention, 87. 

Cristea, N. C., J. D. Lundquist, S. P. Loheide, C. S. Lowry, and C. E. Moore (2014), Modelling how 
vegetation cover affects climate change impacts on streamflow timing and magnitude in the 
snowmelt-dominated upper Tuolumne Basin, Sierra Nevada, Hydrol. Processes, 
doi:10.1002/hyp.9909. 

Cuo, L., T.K. Beyene, N. Voisin, F. Su, D.P. Lettenmaier, M. Alberti, and J.E. Richey. 2011: Effects of 
mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound 
basin, Washington. Hydrological Processes, 25(11): 1729-1753. 

Curran, C. A., Grossman, E. E., Mastin, M. C., & Huffman, R. L. (2010). Sediment Load and Distribution 
in the Lower Skagit River. Skagit County, Washington: US Geological Survey Open-File Report. 

Czarnowski, M. S., and J. L. Olszewski (1968), Rainfall interception by a forest canopy, Oikos 
Supp., 19(2),345–350. 

Dai, A. (2008), Temperature and pressure dependence of the rain-snow phase transition over land and 
ocean, Geophys. Res. Lett., 35, L12802, doi:10.1029/2008GL033295 

Daly, C., W. P. Gibson, G.H. Taylor, G. L. Johnson, P. Pasteris. 2002. A knowledge-based approach to 
the statistical mapping of climate. Climate Research, 22: 99-113 

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, 
P.A. 2008. Physiographically-sensitive mapping of temperature and precipitation across the 
conterminous United States. International Journal of Climatology, 28: 2031-2064. 

Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K., & Arnold, J. G. (2008). Constructing retrospective 
gridded daily precipitation and temperature datasets for the conterminous United States. Journal 
of Applied Meteorology and Climatology, 47(2), 475-497. 

Dulière, V., Zhang, Y., & Salathé Jr, E. P. (2013). Changes in twentieth-century extreme temperature and 
precipitation over the western United States based on observations and regional climate model 
simulations*. Journal of Climate, 26(21), 8556-8575. doi:10.1175/JCLI-D-12-00818.1 

 Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., ... & Lettenmaier, D. P. 
(2010). Implications of 21st century climate change for the hydrology of Washington 
State.Climatic Change, 102(1-2), 225-260. 

Frans, C. 2015. Predicting the role of climate change on glaciated watersheds and the implications for 
regional water resources sustainability. Ph.D. Dissertation. University of Washington.  

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., Sheffield, J., Pan, M., Lettenmaier, D. P., and 
Wood, E. F. (2010). Water budget record from Variable Infiltration Capacity (VIC) model. 
Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records.  

Hamlet, A. F. and D. P. Lettenmaier (2005) Production of Temporally Consistent Gridded Precipitation 
and Temperature Fields for the Continental United States Journal of Hydrometeorology, 6, 330-
336. 

Hamlet, A.F., M.M. Elsner, G.S. Mauger, S-Y. Lee, I. Tohver, and R.A. Norheim. 2013. An overview of 
the Columbia Basin Climate Change Scenarios Project: Approach, methods, and summary of key 
results. Atmosphere-Ocean 51(4):392-415, doi: 10.1080/07055900.2013.819555. 



49 | P a g e  

 

Hegewisch,K.C., Abatzoglou J.T., 2016. An improved Multivariate Adaptive Constructed Analogs 
(MACA) Statistical Downscaling Method. In preparation.  

Henn, B. et al., 2015. Hydroclimatic conditions preceding the March 2014 Oso landslide. Journal of 
Hydrometeorology. 

Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., 
Wickham, J.D., and Megown, K., 2015, Completion of the 2011 National Land Cover Database 
for the conterminous United States-Representing a decade of land cover change 
information. Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354 

Hosking, J. R. M., & Wallis, J. R. (1993). Some statistics useful in regional frequency analysis. Water 
Resources Research, 29(2), 271-281.  

Hosking, J.R.M., 1990. L-moments: analysis and estimation of distributions using linear combinations of 
order statistics. Journal of the Royal Statistical Society, Series B, 52,105-124.  

Hungerford,R.D.,Nemani,R.R.,Running, S.W.,Coughlan,J.C., 1989.MTCLIM: a mountain microclimate 
simulation model. U.S. Forest Service Intermountain Resarch Station Research Paper Int-414. 
Ogden, UT.  

(IPCC) Intergovernmental Panel on Climate Change. 2013. Working Group 1, Summary for Policymakers. 
Available at: http://www.climatechange2013.org/images/uploads/WGIAR5-
SPM_Approved27Sep2013.pdf  

Iverson, R. M. et al., 2015. Landslide mobility and hazards: implications of the 2014 Oso disaster, Earth 
Planet. Sc. Lett., 412, 197–208. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... & Zhu, Y. (1996). The 
NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 
437-471. 

Kelleher, C., T. Wagner, B.L. McGlynn (2015): Model-based analysis of the influence of catchment 
properties on hydrologic partitioning across five mountain headwater sub-catchments. Water 
Resources Research 51(6):4109-4136. DOI: 10.1002/2014WR016147 

Kimball, J.S., Running, S.W., Nemani, R.R., 1997. An improved method for estimating surface humidity 
from daily minimum temperature. Agric. For. Meteorol. 85 (1–2), 87–98, 
http://dx.doi.org/10.1016/S0168-1923(96)02366-0. 

Lee, S. Y., Hamlet, A. F., & Grossman, E. E. (2016). Impacts of Climate Change on Regulated 
Streamflow, Hydrologic Extremes, Hydropower Production, and Sediment Discharge in the 
Skagit River Basin. Northwest Science, 90(1), 23-43. doi:10.3955/046.090.0104  

Liang, X., Wood, E. F., & Lettenmaier, D. P. (1996). Surface soil moisture parameterization of the VIC-
2L model: Evaluation and modification.Global and Planetary Change, 13(1), 195-206. 

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model 
of land surface water and energy fluxes for general circulation models. Journal of Geophysical 
Research: Atmospheres, 99(D7), 14415-14428. 

Livneh B., T.J. Bohn, D.S. Pierce, F. Munoz-Ariola, B. Nijssen, R. Vose, D. Cayan, and L.D. Brekke, 
2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and 
southern Canada 1950-2013, Nature Scientific Data, 5:150042, doi:10.1038/sdata.2015.42. 

Livneh B., E.A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K.M. Andreadis, E.P. Maurer, and D.P. 
Lettenmaier, 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and 
States for the Conterminous United States: Update and Extensions, Journal of Climate, 26, 9384–
9392. 

Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998). Regional scale hydrology: I. 
Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences 
Journal, 43(1), 131-141. doi: 10.1080/02626669809492107 

Lohmann, D., Nolte-Holube, R., & Raschke, E. (1996). A large-scale horizontal routing model to be 
coupled to land surface parametrization schemes. Tellus A, 48(5), 708-721. doi: 10.1034/j.1600-
0870.1996.t01-3-00009.x 



50 | P a g e  

 

Mauger, G.S., J.H. Casola, H.A. Morgan, R.L. Strauch, B. Jones, B. Curry, T.M. Busch Isaksen, L. 
Whitely Binder, M.B. Krosby, and A.K. Snover, 2015. State of Knowledge: Climate Change in 
Puget Sound. Report prepared for the Puget Sound Partnership and the National Oceanic and 
Atmospheric Administration. Climate Impacts Group, University of Washington, Seattle. 
doi:10.7915/CIG93777D 

Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen (2002) A Long-Term 
Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United 
States, Journal of Climate, 15, 3237-3251. 

Mass, C. et al., 2011. Extreme Precipitation over the West Coast of North America: Is There a Trend?. 
Journal of Hydrometeorology, 12(2), 310-318. 

McKay, L., Bondelid, T., Dewald, T., Johnston, J., Moore, R., and Rea, A., “NHDPlus Version 2: User 
Guide”, 2012; https://www.webapps.nwfsc.noaa.gov/wcr/metadata/NHDflowline.htm 

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. 
Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change 
research,Bulletin of the American Meteorological Society, 88, 1383-1394. 

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., ... & Arnold, J. 
R. (2015). Effects of hydrologic model choice and calibration on the portrayal of climate change 
impacts. Journal of Hydrometeorology,16(2), 762-780. 

Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010. Surface temperature lapse rates over complex 
terrain: Lessons from the Cascade Mountains, J. Geophys. Res., 115, D14122, 
doi:10.1029/2009JD013493. 

Mote, P. W., Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., Nijssen, B., Lettenmaier, D. P., 
Stumbaugh, M., Lee, S.-Y., & Bachelet, D., 2015. Integrated Scenarios for the Future Northwest 
Environment. Version 2.0. USGS ScienceBase. Data set accessed 2015-03-02 
at https://www.sciencebase.gov/catalog/item/5006eb9de4b0abf7ce733f5c 

Mote, P. W. et al., 2013. Climate: Variability and Change in the Past and the Future. Chapter 2, 25-40, in 
M.M. Dalton, P.W. Mote, and A.K. Snover (eds.) Climate Change in the Northwest: Implications 
for Our Landscapes, Waters, and Communities, Washington D.C.: Island Press.  

Nakicenovic, N. et al., 2000. Special Report on Emissions Scenarios: A Special Report of Working Group 
III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 
U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm 

Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., & Lettenmaier, D. P. (2014). Modeling the effect of 
glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrology 
and Earth System Sciences, 18(2), 787-802. 

Nick, M., Das, S. and Simonovic, S.P. 2011. The Comparison of GEV, Log-Pearson Type 3 and Gumbel 
Distributions in the Upper Thames River Watershed under Global Climate Models, the University 
of Western Ontario Department of Civil and Environmental Engineering, Report No:077.  

(NRC) National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and 
Washington: Past, Present, and Future. Committee on Sea Level Rise in California, Oregon, 
Washington. Board on Earth Sciences Resources Ocean Studies Board Division on Earth Life 
Studies The National Academies Press. 

Pacific Climate Impacts Consortium, University of Victoria, and PRISM Climate Group, Oregon State 
University, (Jan. 2014). High Resolution Climatology. Downloaded from 
http://tools.pacificclimate.org/dataportal/bc_prism/map/ on Feb. 16, 2016.  

Rahman, A., Weinmann, P.E. and Mein, R.G. (1999). At-site flood frequency analysis: LP3-product 
moment, GEV-L moment and GEV-LH moment procedures compared. In: Proceeding Hydrology 
and Water Resource Symposium, Brisbane, 6–8 July, 2, 715–720.  

Rahman, A., Karin, F, and Rahman, A. 2015. Sampling Variability in Flood Frequency Analysis: How 
Important is it? 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 
Nov 29-Dec 4, 2015, 2200-2206. 



51 | P a g e  

 

Rosenberg, E. A. et al., 2010. Precipitation extremes and the impacts of climate change on stormwater 
infrastructure in Washington State. Climatic Change, 102(1-2), 319-349. 

Ruckleshaus Center, December 19th, 2012. Chehalis Basin Flood Hazard Mitigation Alternatives Report. 
Report to the State of Washington Legislature, Olympia, Washington, USA. 

Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., & Mote, P. W. (2013). Evaluation of CMIP5 20th 
century climate simulations for the Pacific Northwest USA. Journal of Geophysical Research: 
Atmospheres, 118(19). 

Ryoo, J. M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, (2013). 
Impact of Rossby Wave Breaking on U.S. West Coast Winter Precipitation during ENSO Events. 
J. Climate, 26, 6360-6382. 

 Salathé Jr, E. P., Hamlet, A. F., Mass, C. F., Lee, S. Y., Stumbaugh, M., & Steed, R. (2014). Estimates of 
21st century flood risk in the Pacific Northwest based on regional climate model simulations. 
Journal of Hydrometeorology, (2014). 

Salathe Jr, E. P., Leung, L. R., Qian, Y., & Zhang, Y. (2010). Regional climate model projections for the 
State of Washington. Climatic Change, 102(1-2), 51-75. 

Scheff, J., & Frierson, D. M. (2012). Robust future precipitation declines in CMIP5 largely reflect the 
poleward expansion of model subtropical dry zones. Geophysical Research Letters, 39(18). 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. 
(2005). A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). 
National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology 
Div. 

Snover, A.K., Hamlet, A.F., Lettenmaier, D.P. 2003. Climate change scenarios for water planning studies: 
Pilot applications in the Pacific Northwest. Bulletin of the American Meteorological Society 
84(11):1513-1518. 

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. U.S. 
General Soil Map (STATSGO2). Available online at http://sdmdataaccess.nrcs.usda.gov/.  

Storck, P. (2000), Trees, snow and flooding: An investigation of forest canopy effects on snow 
accumulation and melt at the plot and watershed scales in the Pacific Northwest, Water Resour. 
Ser., Tech. Rep. 161, Univ. of Wash., Seattle. 

Storck, P., Bowling, L., Wetherbee, P., & Lettenmaier, D. (1998). Application of a GIS-based distributed 
hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific 
Northwest. Hydrological Processes, 12(6), 889-904. 

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American 
Geophysical Union, 38(6), 913-920. 

Sun, N., J. Yearsley, N. Voisin, and D.P. Lettenmaier, 2013: A spatially distributed model for the 
assessment of land use impacts on stream temperature in small urban watersheds, Hydrol. 
Process. doi: 10.1002/hyp.10363 

Taylor, K. E. et al., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American 
Meteorological Society, 93(4), 485-498, doi:10.1175/BAMS-D-11-00094.1 

Thornton, P.E., Running, S.W., 1999. An improved algorithm for estimating incident daily solar radiation 
from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 93 (4), 
211–228, http://dx.doi.org/10.1016/S0168-1923(98)00126-9.  

Thornton, P.E., Hasenauer, H., White, M.A., 2000. Simultaneous estimation of daily solar radiation and 
humidity from observed temperature and precipitation: an application over complex terrain in 
Austria. Agric. For. Meteorol. 104 (4), 255–271, http://dx.doi.org/10.1016/S0168-
1923(00)00170-2. 

Tohver, I. M., Hamlet, A. F., & Lee, S. Y. (2014). Impacts of 21st-Century Climate Change on 
Hydrologic Extremes in the Pacific Northwest Region of North America. JAWRA Journal of the 
American Water Resources Association, 50(6), 1461-1476. 



52 | P a g e  

 

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1-2), 123-
138. doi:10.3354/cr00953 

Van Vuuren, D. P. et al., 2011. The representative concentration pathways: An overview. Climatic 
Change, 109(1-2), 5-31. 

Vogel, R.M., McMahon, T.A. and Chiew, F.H.S. (1993). Flood flow frequency model selection in 
Australia, Journal Hydrology, 146, 421-449.  

Wang, Q.J. 1997. LH moments for statistical analysis of extreme events. Water Resour Res, 33(12), 2841- 
2848.  

Warner, M.D., et al. 2015. Changes in Winter Atmospheric Rivers along the North American West Coast 
in CMIP5 Climate Models. J. Hydrometeor, 16, 118–128. doi: http://dx.doi.org/10.1175/JHM-D-
14-0080.1 

Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2013. An evaluation of the utility 
of fine-scale, downscaled climate projections for connectivity conservation planning. Washington 
Departments of Fish and Wildlife, and Transportation, Olympia, WA. 
http://waconnected.org/climate-resilient-corridors/  

Wigmosta, M.S., B. Nijssen, P. Storck, and D.P. Lettenmaier, 2002: The Distributed Hydrology Soil 
Vegetation Model, In Mathematical Models of Small Watershed Hydrology and Applications, 
V.P. Singh, D.K. Frevert, eds., Water Resource Publications, Littleton, CO., p. 7-42. 

Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for 
complex terrain. Water resources research,30(6), 1665-1679. 

 

  



53 | P a g e  

 

Appendix A: Links to Project Code, Models, and Data 

All results, model files, climate data, and other documentation are linked from main project page 
(Tables 11, 12). This includes links to the Google map, HTTP archive, and Hydroshare resource 
(Figure 27). The “Data Structure” section above describes the organization of the streamflow 
projections. 

Table 11. Links to the key project resources, all of which are also linked from the main project page 
listed in the top row of the table. 

Contents Link 
Main project page https://cig.uw.edu/datasets/hydrology-in-the-chehalis-basin/ 
Google Map https://www.google.com/maps/d/viewer?mid=1RU1wVMm737y_BbsJ03aIBc1qh6c 
HTTP archive http://cses.washington.edu/rocinante/2016_04_ChehalisFlooding/pub/ 
HydroShare resource https://www.hydroshare.org/resource/05374e83f5a4443a88f394658c4a7d00/ 

 

Table 12. Links to key Hydroshare resources associated with this project. This is a partial listing, 
intended to illustrate the contents of the resource. 

Hydroshare Page Link 
Main Project Page https://www.hydroshare.org/resource/05374e83f5a4443a88f394658c4a7d00/ 
1/16-degree DEM https://www.hydroshare.org/resource/c18cef883695498c81acf9c4260d1e53/  
Chehalis DHSVM http://www.hydroshare.org/resource/b27a6b3c449e4974bb654eaec8c7f093  
Chehalis VIC http://www.hydroshare.org/resource/f702ce233e7d43fcbedf81407ed7327c  

 

 

	

Figure 27. Screenshots of the three primarily online resources housing results, source code, and 
additional details on the project. All resources are linked from the CIG data page (left), including the 
clickable google map (middle) for viewing streamflow results, and the Hydroshare archive, containing 
model code, configuration details, and other ancillary information for use in future studies. 


