Chehalis Basin Strategy Flood Retention Expandable (FRE)Presentation to Lewis County FCZD

October 25, 2018

Operational Goals of FRE

- Provide flood reduction in downstream areas
- Preserve geomorphic processes downstream
- Maintain slope stability in reservoir
- Keep rate of change in flows downstream within accepted limits
- Provide for debris management/removal in reservoir after floods

Proposed Operating Rules – Flood Retention Expandable (FRE)

- Available flood storage capacity = 65,000 acre-feet
- Operate the facility without impounding water except during a potentially damaging flood
- Begin storing when Grand Mound flows are predicted to be above the "Major Flood" (38,800 cfs) within 48 hours
- Reduce reservoir outflow at a rate of 200 cfs/hour until reaching 300 cfs
- Maintain reservoir pool for additional 2 weeks for debris management

Example Inflow/Outflow Hydrograph for FRE

Before and during a flood

Example Inflow/Outflow Hydrograph for FRE

After a flood

5

Peak Flow Reduction During Floods

Reservoir in use during major flood (greater than 38,700 cubic feet per second [cfs] at Grand Mound), which is a 7-year flood (about 15 percent chance of occurrence in any year)

FLOOD	EXISTING PEAK FLOW (CFS)	PEAK FLOW WITH FLOOD RETENTION (CFS)	DIFFERENCE IN PEAK FLOW (%)
100-year	70,600	58,400	-17.3%
10-year	43,800	37,500	-14.4%
1996	72,100	61,200	-8.5%
2007	71,100	52,100	-26.7%
2009	57,300	48,600	-15.2%

Peak Elevation Reduction

Water Surface Elevation Reduction in the Chehalis River (100-year flood)

LOCATION	EXISTING PEAK ELEVATION (FEET)	PEAK ELEVATION WITH FLOOD RETENTION (FEET)	DIFFERENCE IN PEAK ELEVATION (FEET)
Near Doty	319.2	308.1	-11.1
Downstream of South Fork	222.2	217.1	-5.1
Along Airport Levee	180.5	179.0	-1.5
Behind Airport Levee	180.3	173.3	-7.0
Mellen Street	177.7	176.0	-1.7
Galvin Road	168.2	166.5	-1.7
Grand Mound	147.5	146.6	-0.9
Near Rochester	124.4	123.4	-1.0
Montesano	18.6	17.9	-0.7

Flood Reduction – Upper Chehalis Basin (100-year Flood)

FRE Design

- Reservoir normally dry, temporary inundation during major floods (up to 32 days)
- Flood storage = 65,000 acre-feet
- Max storage depth in reservoir (at dam) = 227 feet
- Inundation area at max storage = 863 acres
- Length of reservoir at full pool = 6.8 miles
- Fish passage through 5 large tunnels in dam except when reservoir is in use then a CHTR (trap and haul facility) will be used

FRE Dam

FRE Design

11

FRE Design

- FRE Dam would allow for future expansion
- FRE volume (65,000 acre-feet) but with a larger foundation to allow the dam to be raised to store 130,000 acre-feet (FRE-FC).
- Gates and outlets would also be designed to work under greater pressure if dam raised in the future
- Additional storage volume could be used to hold larger floods expected under climate change or to provide instream flow and reduce temperatures in the Chehalis River in the future.

FRE Construction - Diversion Tunnel & Cofferdams

- Right abutment diversion tunnel
- Upstream and downstream cofferdams
- Exit location downstream of new CHTR facility
- Tunnel design information needs for next design phase
 - \odot Rock type and appropriate tunnel support
 - Tunnel headers
 - \odot Energy dissipation at discharge end

Coffer Dams and Diversion Tunnel

Non-overflow Section of Dam

Section A-A FRE Dam Non-Overflow Section

Spillway

- Ogee crest with shallow approach section
- 200 foot crest length at elevation 628 ft (msl)
- No spillway control gates
- Spillway chute constructed to final dimensions and footprint
- Flip bucket constructed to final dimensions

Spillway

Section B-B FRE Dam Overflow Spillway

Outlet Conduits and Water Quality Outlets

Dam outlets

- 5 Outlet conduits (1-12'Wx20'H, and 4-10'Wx16'H)
- Radial control gates
- \circ Downstream stilling basin 240 ft long

Outlet Conduits and Water Quality Outlets

Section C-C FRE Dam Low Level Outlet Works (LLO)

Fish Passage Design Considerations

- Upstream and Downstream Passage (no flood operations)
 - \circ Outlet conduits
 - Target Residents, juveniles, adults, and lamprey
- Upstream passage (when flood operations occur)
 CHTR (Trap and transport)
 - Target Residents, juveniles, adults, and lamprey

Fish Passage During Normal Operation via Conduits

Section C-C FRE Dam Low Level Outlet Works (LLO)

Fish Passage During Normal Operations via Conduits

- Conduits provide both upstream and downstream fish passage
- Up to 5 conduits required
- Mimic natural flow and sediment regime of Chehalis River through project reach
- Target flow velocity ~ 2 fps or less to accommodate weaker swimming fish when possible

Fish Passage During Flood Operations via CHTR Facility

Example January 2009 flow event

Fish Passage During Flood Operations via CHTR Facility

CHTR Facility Concept Design Isometric View

CHTR Facility Concept Design - Key Considerations

- Provide separate pathways for Adult, Juvenile/Resident, and Lamprey species targeted for passage
 - o (1) Low velocity/Low hydraulic head entrance
 - (4) Adult fish ladder entrances
 - Three pathways: Adult Ladder, Juvenile/Resident Ladder, Lamprey Ramp
- Accommodate all resident species to the extent possible
 - To be evaluated based upon swimming capability of different resident species

CHTR Facility Concept Design - Three Pathways to Accommodate Expanded List of Species

• Three options considered

- Bypass tunnel
- \odot Construct elements of the CHTR first
- Temporary Trap and Transport

Option 1 - Bypass tunnel

- Designed to be hydraulically efficient
 - $\,\circ\,$ High velocity throughout range of fish passage flows
 - $\,\circ\,$ Smaller cross-sectional area
 - $\,\circ\,$ Low roughness
- Modifications to accommodate upstream fish passage would be too costly and would inhibit ability to convey flood flows around construction site
- Likely acceptable pathway for downstream passage of juveniles and post-spawn adults during construction

Option 2 – Construct CHTR First

- Foundation excavation limits of dam interfere with construction of CHTR on right bank
- Construction phasing conflicts with stilling basin and ladder entrance – would require temporary fish passage measures regardless

Option 3 – Temporary Trap and Transport

- Likely the most pragmatic and cost effective strategy to be used throughout construction
- Elements can be located downstream of the proposed project providing better isolation of the construction area
- Designed to allow safe passage of downstream migrants
- Targets adult life stages Limited anticipated success collecting upstream migrating juveniles if they occur during the construction period.

Questions/Comments